【題目】已知函數(shù) .
(Ⅰ)當(dāng)時,求的圖象在處的切線方程;
(Ⅱ)若函數(shù)與圖象在上有兩個不同的交點(diǎn),求實數(shù)的取值范圍.
【答案】(Ⅰ)y=2x-1. (Ⅱ)[].
【解析】【試題分析】(I)當(dāng)時,求出和的值,利用點(diǎn)斜式求得切線方程.(II)令,化簡得,構(gòu)造函數(shù),利用導(dǎo)數(shù)求得在區(qū)間上的極大值為,通過計算和可知在區(qū)間上的最小值為,由此可用最大值大于零,最小值不大于零列不等式組,求得的取值范圍.
【試題解析】
(Ⅰ)解 當(dāng)時,f(x)=2lnx-x2+2x,f′(x)=-2x+2,
切點(diǎn)坐標(biāo)為(1,1),切線的斜率k=f′(1)=2,
則切線方程為y-1=2(x-1),即y=2x-1.
(Ⅱ)解:由題意可得:2lnx-x2+m=0,令h(x)=2lnx-x2+m,
則h′(x)=-2x=,
∵x∈,故h′(x)=0時,x=1.
當(dāng)<x<1時,h′(x)>0;當(dāng)1<x<e時,h′(x)<0.
故h(x)在x=1處取得極大值h(1)=m-1.
又=m-2-,h(e)=m+2-e2,h(e)-=4-e2+<0,
則h(e)<,
∴h(x)在[]上的最小值為h(e).
h(x)在[]上有兩個零點(diǎn)的條件是,
解得1<m≤2+
∴實數(shù)m的取值范圍是[].
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左頂點(diǎn)為,右焦點(diǎn)為,點(diǎn)在橢圓上.
(1)求橢圓的方程;
(2)若直線與橢圓交于兩點(diǎn),直線分別與軸交于點(diǎn),在軸上,是否存在點(diǎn),使得無論非零實數(shù)怎樣變化,總有為直角?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中有如下問題:“今有芻甍,下廣三丈,袤四丈,上袤二丈,無廣,高二丈,問:積幾何?”其意思為:“今有底面為矩形的屋脊?fàn)畹男w,下底面寬3丈,長4丈,上棱長2丈,高2丈,問:它的體積是多少?”已知l丈為10尺,該楔體的三視圖如圖所示,其中網(wǎng)格紙上小正方形邊長為1,則該楔體的體積為( )
A. 10000立方尺 B. 11000立方尺
C. 12000立方尺 D. 13000立方尺
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體中,,分別是棱,的中點(diǎn),為棱上一點(diǎn),且平面.
(1)證明:為中點(diǎn);
(2)求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)為了解下屬某部門對本企業(yè)職工的服務(wù)情況,隨機(jī)訪問50名職工,根據(jù)這50名職工對該部門的評分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為
(1)求頻率分布直方圖中的值;
(2)估計該企業(yè)的職工對該部門評分不低于80的概率;
(3)從評分在的受訪職工中,隨機(jī)抽取2人,求此2人評分都在的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國的鎢礦資源儲量豐富,在全球已經(jīng)探明的鎢礦產(chǎn)資源儲量中占比近,居全球首位。中國又屬贛州鎢礦資源最為豐富,其素有“世界鎢都”之稱。某科研單位在研發(fā)的鎢合金產(chǎn)品的過程中發(fā)現(xiàn)了一種新合金材料,由大數(shù)據(jù)測得該產(chǎn)品的性能指標(biāo)值與這種新合金材料的含量x(單位:克)的關(guān)系為:當(dāng)時, 是的二次函數(shù);當(dāng)時, .測得部分?jǐn)?shù)據(jù)如表.
x(單位:克) | 0 | 1 | 2 | 9 | … |
y | 0 | 3 | … |
(1)求y關(guān)于x的函數(shù)關(guān)系式y=
(2)求函數(shù)的最大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù),),以為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(Ⅰ)求直線的普通方程和曲線的直角坐標(biāo)方程;
(Ⅱ)設(shè),直線交曲線于兩點(diǎn),是直線上的點(diǎn),且,當(dāng)最大時,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)有一個極小值點(diǎn)和一個極大值點(diǎn),求的取值范圍;
(2)設(shè),若存在,使得當(dāng)時, 的值域是,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若一個人下半身長(肚臍至足底)與全身長的比近似為(,稱為黃金分割比),堪稱“身材完美”,且比值越接近黃金分割比,身材看起來越好,若某人著裝前測得頭頂至肚臍長度為72,肚臍至足底長度為103,根據(jù)以上數(shù)據(jù),作為形象設(shè)計師的你,對TA的著裝建議是( )
A.身材完美,無需改善B.可以戴一頂合適高度的帽子
C.可以穿一雙合適高度的增高鞋D.同時穿戴同樣高度的增高鞋與帽子
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com