【題目】如圖,在平面直角坐標(biāo)系xOy中,已知以M為圓心的圓M: 及其上一點(diǎn)A(2,4)
(1)設(shè)圓N與x軸相切,與圓M外切,且圓心N在直線x=6上,求圓N的標(biāo)準(zhǔn)方程;
(2)設(shè)平行于OA的直線l與圓M相交于B、C兩點(diǎn),且BC=OA,求直線l的方程;
(3)設(shè)點(diǎn)T(t,o)滿足:存在圓M上的兩點(diǎn)P和Q,使得,求實(shí)數(shù)t的取值范圍。
【答案】(1)(2)(3)
【解析】試題分析:(1)根據(jù)直線與x軸相切確定圓心位置,再根據(jù)兩圓外切建立等量關(guān)系求半徑;(2)根據(jù)垂徑定理確定等量關(guān)系,求直線方程;(3)利用向量加法幾何意義建立等量關(guān)系,根據(jù)圓中弦長(zhǎng)范圍建立不等式,求解即得參數(shù)取值范圍.
試題解析:解:圓M的標(biāo)準(zhǔn)方程為,所以圓心M(6,7),半徑為5,.
(1)由圓心N在直線x=6上,可設(shè).因?yàn)?/span>N與x軸相切,與圓M外切,
所以,于是圓N的半徑為,從而,解得.
因此,圓N的標(biāo)準(zhǔn)方程為.
(2)因?yàn)橹本l∥OA,所以直線l的斜率為.
設(shè)直線l的方程為y=2x+m,即2x-y+m=0,
則圓心M到直線l的距離
因?yàn)?/span>
而
所以,解得m=5或m=-15.
故直線l的方程為2x-y+5=0或2x-y-15=0.
(3)設(shè)
因?yàn)?/span>,所以……①
因?yàn)辄c(diǎn)Q在圓M上,所以…….②
將①代入②,得.
于是點(diǎn)既在圓M上,又在圓上,
從而圓與圓沒有公共點(diǎn),
所以解得.
因此,實(shí)數(shù)t的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,設(shè)圓x2+y2-4x=0的圓心為Q.
(1)求過(guò)點(diǎn)P(0,-4)且與圓Q相切的直線的方程;
(2)若過(guò)點(diǎn)p(0,-4)且斜率為k的直線與圓Q相交于不同的兩點(diǎn)A,B,以OA、OB為鄰邊做平行四邊形OABC,問(wèn)是否存在常數(shù)k,使得平行四邊形OABC為矩形?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,PA⊥平面ABCD,四邊形ABCD是直角梯形,其中DA⊥AB,AD∥BC.PA=2AD=BC=2,AB=2 .
(1)求異面直線PC與AD所成角的大小;
(2)若平面ABCD內(nèi)有一經(jīng)過(guò)點(diǎn)C的曲線E,該曲線上的任一動(dòng)點(diǎn)Q都滿足PQ與AD所成角的大小恰等于PC與AD所成角.試判斷曲線E的形狀并說(shuō)明理由;
(3)在平面ABCD內(nèi),設(shè)點(diǎn)Q是(2)題中的曲線E在直角梯形ABCD內(nèi)部(包括邊界)的一段曲線CG上的動(dòng)點(diǎn),其中G為曲線E和DC的交點(diǎn).以B為圓心,BQ為半徑r的圓分別與梯形的邊AB、BC交于M、N兩點(diǎn).當(dāng)Q點(diǎn)在曲線段CG上運(yùn)動(dòng)時(shí),試求圓半徑r的范圍及VP﹣BMN的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:x、y、z是正實(shí)數(shù),且x+2y+3z=1,
(1)求 的最小值;
(2)求證:x2+y2+z2≥ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的最大值為.
(Ⅰ)求常數(shù)的值;
(Ⅱ)求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅲ)若將的圖象向左平移個(gè)單位,得到函數(shù)的圖象,求函數(shù)在區(qū)間上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)是實(shí)數(shù)集R上的奇函數(shù),當(dāng)時(shí), .
(1)求的值和函數(shù)的表達(dá)式;
(2)求證:方程在區(qū)間上有唯一解.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】農(nóng)科院的專家為了了解新培育的甲、乙兩種麥苗的長(zhǎng)勢(shì)情況,從甲、乙兩種麥苗的試驗(yàn)田中各抽取6株麥苗測(cè)量麥苗的株高,數(shù)據(jù)如下:(單位:cm)
甲:9,10,11,12,10,20
乙:8,14,13,10,12,21.
(1)在給出的方框內(nèi)繪出所抽取的甲、乙兩種麥苗株高的莖葉圖;
(2)分別計(jì)算所抽取的甲、乙兩種麥苗株高的平均數(shù)與方差,并由此判斷甲、乙兩種麥苗的長(zhǎng)勢(shì)情況.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(選修4﹣5:不等式選講)
已知函數(shù)f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.
(1)當(dāng)a=﹣2時(shí),求不等式f(x)<g(x)的解集;
(2)設(shè)a>﹣1,且當(dāng) 時(shí),f(x)≤g(x),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】街道旁邊有一游戲:在鋪滿邊長(zhǎng)為9 cm的正方形塑料板的寬廣地面上,擲一枚半徑為1 cm的小圓板,規(guī)則如下:每擲一次交5角錢,若小圓板壓在正方形的邊上,可重?cái)S一次;若擲在正方形內(nèi),須再交5角錢可玩一次;若擲在或壓在塑料板的頂點(diǎn)上,可獲得一元錢,試問(wèn):
(1)小圓板壓在塑料板的邊上的概率是多少?
(2)小圓板壓在塑料板頂點(diǎn)上的概率是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com