【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).

1)若,求曲線在點處的切線方程;

2)若關(guān)于的不等式上恒成立,求實數(shù)的取值范圍.

【答案】12

【解析】試題分析:(1利用導(dǎo)數(shù)的意義求得切線方程為;(2,設(shè),通過求導(dǎo),分類討論,得到

的取值范圍為

試題解析

(1)依題意, , ,

,而,故所求方程為,

2,

依題意,當時, ,

即當時, ;

設(shè),則,

設(shè),則

①當時,∵,,從而(當且僅當時,等號成立),

上單調(diào)遞增,

又∵,∴當時, ,從而當時, ,

上單調(diào)遞減,又∵,

從而當時, ,即,

于是當時, ;

②當時,令,得,,

故當時, ,

上單調(diào)遞減,

又∵,∴當時, ,

從而當時, ,

上單調(diào)遞增,又∵,

從而當時, ,即

于是當時, ,不符合題意.

綜上所述,實數(shù)的取值范圍為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2018屆江蘇省泰州中學(xué)高三12月月考】已知橢圓的中心為坐標原點,橢圓短軸長為,動點)在橢圓的準線上.

(1)求橢圓的標準方程;

(2)求以為直徑且被直線截得的弦長為的圓的方程;

(3)設(shè)是橢圓的右焦點,過點的垂線與以為直徑的圓交于點,求證:線段的長為定值,并求出這個定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=(m2m-1)·是冪函數(shù),對任意x1,x2∈(0,+∞)且x1x2,滿足,若a,b∈R且ab>0,ab<0,則f(a)+f(b)的值(  )

A. 恒大于0 B. 恒小于0

C. 等于0 D. 無法判斷

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),有三個不同的零點,(其中),則的值為( )

A. B. C. -1 D. 1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓的右頂點為,左、右焦點分別為,過點且斜率為的直線與軸交于點,與橢圓交于另一個點,且點軸上的射影恰好為點

(1)求橢圓的標準方程;

(2)過點的直線與橢圓交于兩點(不與重合),若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的單調(diào)函數(shù)f(x)滿足f(2),且對任意xyR,都有f(xy)f(x)f(y)

(1)求證:f(x)為奇函數(shù);

(2)f(k·3x)f(3x9x2)<0對任意xR恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

1若關(guān)于的方程上恒成立,求的值;

2)證明:當時,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種產(chǎn)品的質(zhì)量以其質(zhì)量指標值衡量,并依據(jù)質(zhì)量指標值劃分等級如下表:

從某企業(yè)生產(chǎn)的這種產(chǎn)品中抽取200件,檢測后得到如下的頻率分布直方圖:

(1)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“一、二等品至少要占全部產(chǎn)品”的規(guī)定?

(2)在樣本中,按產(chǎn)品等級用分層抽樣的方法抽取8件,再從這8件產(chǎn)品中隨機抽取4件,求抽取的4件產(chǎn)品中,一、二、三等品都有的概率;

(3)該企業(yè)為提高產(chǎn)品質(zhì)量,開展了“質(zhì)量提升月”活動,活動后再抽樣檢測,產(chǎn)品質(zhì)量指標值近似滿足,則“質(zhì)量提升月”活動后的質(zhì)量指標值的均值比活動前大約提升了多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), ,(其中, 為自然對數(shù)的底數(shù), ……).

(1)令,若對任意的恒成立,求實數(shù)的值;

(2)在(1)的條件下,設(shè)為整數(shù),且對于任意正整數(shù), ,求的最小值.

查看答案和解析>>

同步練習(xí)冊答案