【題目】下表是某公司20185~12月份研發(fā)費(fèi)用(百萬元)和產(chǎn)品銷量(萬臺(tái))的具體數(shù)據(jù):

5

6

7

8

9

10

11

12

研發(fā)費(fèi)用(百萬元)

2

3

6

10

21

13

15

18

產(chǎn)品銷量(萬臺(tái))

1

1

2

2.5

6

3.5

3.5

4.5

(Ⅰ)根據(jù)數(shù)據(jù)可知之間存在線性相關(guān)關(guān)系,求出的線性回歸方程(系數(shù)精確到0.01);

(Ⅱ)該公司制定了如下獎(jiǎng)勵(lì)制度:以(單位:萬臺(tái))表示日銷售,當(dāng)時(shí),不設(shè)獎(jiǎng);當(dāng)時(shí),每位員工每日獎(jiǎng)勵(lì)200元;當(dāng)時(shí),每位員工每日獎(jiǎng)勵(lì)300元;當(dāng)時(shí),每位員工每日獎(jiǎng)勵(lì)400.現(xiàn)已知該公司某月份日銷售(萬臺(tái))服從正態(tài)分布(其中20185-12月產(chǎn)品銷售平均數(shù)的二十分之一),請(qǐng)你估計(jì)每位員工該月(按30天計(jì)算)獲得獎(jiǎng)勵(lì)金額總數(shù)大約多少元.

參考數(shù)據(jù):,,,,

參考公式:相關(guān)系數(shù),其回歸直線中的,若隨機(jī)變量服從正態(tài)分布,則,.

【答案】(Ⅰ)(Ⅱ)7839.3

【解析】

(Ⅰ)由題意計(jì)算x、y的平均值,進(jìn)而由公式求出回歸系數(shù)ba,即可寫出回歸直線方程;

(Ⅱ)由題意計(jì)算平均數(shù)μ,得出z~N (μ,),求出日銷量z[0.13,0.15) 、[0.15,0.16)[0.16,+∞)的概率,計(jì)算獎(jiǎng)金總數(shù)是多少.

(Ⅰ)因?yàn)?/span>,

因?yàn)?/span>,

所以,

所以

(Ⅱ)因?yàn)?/span>,

所以

,

日銷量的概率為,

日銷量的概率為,

日銷量的概率為

所以獎(jiǎng)金總數(shù)大約為:(元).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位準(zhǔn)備購(gòu)買三臺(tái)設(shè)備,型號(hào)分別為已知這三臺(tái)設(shè)備均使用同一種易耗品,提供設(shè)備的商家規(guī)定:可以在購(gòu)買設(shè)備的同時(shí)購(gòu)買該易耗品,每件易耗品的價(jià)格為100元,也可以在設(shè)備使用過程中,隨時(shí)單獨(dú)購(gòu)買易耗品,每件易耗品的價(jià)格為200.為了決策在購(gòu)買設(shè)備時(shí)應(yīng)購(gòu)買的易耗品的件數(shù).該單位調(diào)查了這三種型號(hào)的設(shè)備各60臺(tái),調(diào)査每臺(tái)設(shè)備在一個(gè)月中使用的易耗品的件數(shù),并得到統(tǒng)計(jì)表如下所示.

每臺(tái)設(shè)備一個(gè)月中使用的易耗品的件數(shù)

6

7

8

型號(hào)A

30

30

0

頻數(shù)

型號(hào)B

20

30

10

型號(hào)C

0

45

15

將調(diào)查的每種型號(hào)的設(shè)備的頻率視為概率,各臺(tái)設(shè)備在易耗品的使用上相互獨(dú)立.

1)求該單位一個(gè)月中三臺(tái)設(shè)備使用的易耗品總數(shù)超過21件的概率;

2)以該單位一個(gè)月購(gòu)買易耗品所需總費(fèi)用的期望值為決策依據(jù),該單位在購(gòu)買設(shè)備時(shí)應(yīng)同時(shí)購(gòu)買20件還是21件易耗品?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD為矩形,點(diǎn)A、E、B、F共面,且均為等腰直角三角形,且90°.

(Ⅰ)若平面ABCD平面AEBF,證明平面BCF平面ADF;

(Ⅱ)問在線段EC上是否存在一點(diǎn)G,使得BG∥平面CDF,若存在,求出此時(shí)三棱錐G-ABE與三棱錐G-ADF的體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,平面五邊形是由邊長(zhǎng)為2的正方形與上底為1,高為直角梯形組合而成,將五邊形沿著折疊,得到圖2所示的空間幾何體,其中.

1)證明:平面;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)為,過點(diǎn)的直線交拋物線兩點(diǎn).

1)當(dāng)時(shí),求直線的方程;

2)若過點(diǎn)且垂直于直線的直線與拋物線交于兩點(diǎn),記的面積分別為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】到2020年,我國(guó)將全面建立起新的高考制度,新高考采用模式,其中語文、數(shù)學(xué)、英語三科為必考科目,滿分各150分,另外考生還要依據(jù)想考取的高校及專業(yè)的要求,結(jié)合自己的興趣、愛好等因素,在思想政治、歷史、地理、物理、化學(xué)、生物6門科目中自選3門(6選3)參加考試,滿分各100分.為了順利迎接新高考改革,某學(xué)校采用分層抽樣的方法從高一年級(jí)1000名(其中男生550名,女生450名)學(xué)生中抽取了名學(xué)生進(jìn)行調(diào)查.

(1)已知抽取的名學(xué)生中有女生45名,求的值及抽取的男生的人數(shù).

(2)該校計(jì)劃在高一上學(xué)期開設(shè)選修中的“物理”和“地理”兩個(gè)科目,為了解學(xué)生對(duì)這兩個(gè)科目的選課情況,對(duì)在(1)的條件下抽取到的名學(xué)生進(jìn)行問卷調(diào)查(假定每名學(xué)生在這兩個(gè)科目中必須選擇一個(gè)科目,且只能選擇一個(gè)科目),得到如下列聯(lián)表.

選擇“物理”

選擇“地理”

總計(jì)

男生

10

女生

25

總計(jì)

(i)請(qǐng)將列聯(lián)表補(bǔ)充完整,并判斷是否有以上的把握認(rèn)為選擇科目與性別有關(guān)系.

(ii)在抽取的選擇“地理”的學(xué)生中按性別分層抽樣抽取6名,再?gòu)倪@6名學(xué)生中抽取2名,求這2名中至少有1名男生的概率.

附:,其中.

0.05

0.01

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某省確定從2021年開始,高考采用的模式,取消文理分科,即“3”包括語文、數(shù)學(xué)、外語,為必考科目;“1”表示從物理、歷史中任選一門;“2”則是從生物、化學(xué)、地理、政治中選擇兩門,共計(jì)六門考試科目.某高中從高一年級(jí)2000名學(xué)生(其中女生900人)中,采用分層抽樣的方法抽取名學(xué)生進(jìn)行調(diào)查.

1)已知抽取的名學(xué)生中含男生110人,求的值及抽取到的女生人數(shù);

2)學(xué)校計(jì)劃在高二上學(xué)期開設(shè)選修中的物理歷史兩個(gè)科目,為了了解學(xué)生對(duì)這兩個(gè)科目的選課情況,對(duì)在(1)的條件下抽取到的名學(xué)生進(jìn)行問卷調(diào)杳(假定每名學(xué)生在這兩個(gè)科目中必須洗擇一個(gè)科目且只能選擇一個(gè)科目).下表是根據(jù)調(diào)查結(jié)果得到的列聯(lián)表,請(qǐng)將列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為選擇科目與性別有關(guān)?說明你的理由;

性別

選擇物理

選擇歷史

總計(jì)

男生

50

女生

30

總計(jì)

3)在(2)的條件下,從抽取的選擇物理的學(xué)生中按分層抽樣抽取6人,再?gòu)倪@6名學(xué)生中抽取2人,對(duì)物理的選課意向作深入了解,求2人中至少有1名女生的概率.

附:,其中.

0.100

0.050

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《張丘建算經(jīng)》是中國(guó)古代的著名數(shù)學(xué)著作,該書表明:至遲于公元5世紀(jì),中國(guó)已經(jīng)系統(tǒng)掌握等差數(shù)列的相關(guān)理論,該書上卷22題又女工善織問題今有女善織,日益功疾,初日織五尺,今一月曰織九匹三丈,問日益幾何?,大概意思是:有一個(gè)女工人善于織布,每天織布的尺數(shù)越來越多且成等差數(shù)列,第一天知5尺,30天共織九匹三丈,問每天增加的織布數(shù)目是多少寸?答案是__________.(注:當(dāng)時(shí)一匹為四丈,一丈為十尺,一尺為十寸,結(jié)果四舍五入精確到寸)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】坐標(biāo)系與參數(shù)方程:在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知點(diǎn)的極坐標(biāo)為,直線的極坐標(biāo)方程為,且點(diǎn)在直線

)求的值和直線的直角坐標(biāo)方程及的參數(shù)方程;

)已知曲線的參數(shù)方程為,(為參數(shù)),直線交于兩點(diǎn),求的值

查看答案和解析>>

同步練習(xí)冊(cè)答案