【題目】某市民用水?dāng)M實(shí)行階梯水價(jià),每人用水量中不超過立方米的部分按4元/立方米收費(fèi),超出立方米的部分按10元/立方米收費(fèi),從該市隨機(jī)調(diào)查了10000位居民,獲得了他們某月的用水量數(shù)據(jù),整理得到如下頻率分布直方圖:
(1)如果為整數(shù),那么根據(jù)此次調(diào)查,為使80%以上居民在該月的用水價(jià)格為4元/立方米, 至少定為多少?
(2)假設(shè)同組中的每個(gè)數(shù)據(jù)用該組區(qū)間的右端點(diǎn)值代替,當(dāng)時(shí),估計(jì)該市居民該月的人均水費(fèi).
【答案】(Ⅰ)3;(Ⅱ)10.5元.
【解析】試題分析:(1)根據(jù)水量的頻率分布直方圖知月用水量不超過立方米的居民占,所以至少定為;(2)直接求每個(gè)數(shù)據(jù)用該組區(qū)間的右端點(diǎn)值與各組頻率的乘積之和即可.
試題解析:(1)由用水量的頻率分布直方圖知,
該市居民該月用水量在區(qū)間內(nèi)的頻率依次為.
所以該月用水量不超過立方米的居民占,用水量不超過立方米的居民占.依題意, 至少定為
(2)由用水量的頻率分布直方圖及題意,得居民該月用水費(fèi)用的數(shù)據(jù)分組與頻率分布表:
組號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
分組 | ||||||||
頻率 | 0.1 | 0.15 | 0.2 | 0.25 | 0.15 | 0.05 | 0.05 | 0.05 |
根據(jù)題意,該市居民該月的人均水費(fèi)估計(jì)為:
(元).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖3,是一個(gè)直角梯形,,為邊上一點(diǎn),、相交于,,,.將△沿折起,使平面⊥平面,連接、,得到如圖4所示的四棱錐.
(Ⅰ)求證:⊥平面;
(Ⅱ)求直線與面所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年5月,來自“一帶一路”沿線的20國青年評(píng)選出了中國的“新四大發(fā)明”:高鐵、掃碼支付、共享單車和網(wǎng)購。為拓展市場(chǎng),某調(diào)研組對(duì)甲、乙兩個(gè)品牌的共享單車在5個(gè)城市的用戶人數(shù)進(jìn)行統(tǒng)計(jì),得到如下數(shù)據(jù):
城市 品牌 | Ⅰ | Ⅱ | Ⅲ | Ⅳ | Ⅴ |
甲品牌(百萬) | 4 | 3 | 8 | 6 | 12 |
乙品牌(百萬) | 5 | 7 | 9 | 4 | 3 |
(Ⅰ)如果共享單車用戶人數(shù)超過5百萬的城市稱為“優(yōu)質(zhì)潛力城市”,否則“非優(yōu)”,請(qǐng)據(jù)此判斷是否有85%的把握認(rèn)為“優(yōu)質(zhì)潛力城市”與共享單車品牌有關(guān)?
(Ⅱ)如果不考慮其它因素,為拓展市場(chǎng),甲品牌要從這5個(gè)城市中選出3個(gè)城市進(jìn)行大規(guī)模宣傳.
①在城市Ⅰ被選中的條件下,求城市Ⅱ也被選中的概率;
②以表示選中的城市中用戶人數(shù)超過5百萬的個(gè)數(shù),求隨機(jī)變量的分布列及數(shù)學(xué)期望.
下面臨界值表供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式: K2=,n=a+b+c+d
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), 為自然對(duì)數(shù)的底數(shù), .
(1)試討論函數(shù)的單調(diào)性;
(2)當(dāng)時(shí), 恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系中的一個(gè)橢圓,它的中心在原點(diǎn),左焦點(diǎn)為,右頂點(diǎn)為,設(shè)點(diǎn).
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)若是橢圓上的動(dòng)點(diǎn),求線段中點(diǎn)的軌跡方程;
(3)過原點(diǎn)的直線交橢圓于點(diǎn),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高三理科某班有男同學(xué)30名,女同學(xué)15名,老師按照分層抽樣的方法組建一個(gè)6人的課外興趣小組.
(1)求課外興趣小組中男、女同學(xué)各應(yīng)抽取的人數(shù);
(2)在一周的技能培訓(xùn)后從這6人中選出兩名同學(xué)做某項(xiàng)實(shí)驗(yàn),方法是先從小組里選出1名同學(xué)做實(shí)驗(yàn),該同學(xué)做完后,再從小組內(nèi)剩下的同學(xué)中選1名同學(xué)做實(shí)驗(yàn),求選出的兩名同學(xué)中恰好僅有一名女同學(xué)的概率;
(3)實(shí)驗(yàn)結(jié)束后,第一次做實(shí)驗(yàn)的同學(xué)得到的實(shí)驗(yàn)數(shù)據(jù)為1.6、2、1.9、2.5、2,第二次做實(shí)驗(yàn)的同學(xué)得到的實(shí)驗(yàn)數(shù)據(jù)是2.1、1.8、1.9、2、2.2,請(qǐng)問哪位同學(xué)的實(shí)驗(yàn)更穩(wěn)定?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(ax2+bx+c)ex(a>0)的導(dǎo)函數(shù)y=f′(x)的兩個(gè)零點(diǎn)為-3和0.
(1)求f(x)的單調(diào)區(qū)間;
(2)若f(x)的極小值為-1,求f(x)的極大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)且在處的切線與直線垂直.
(1)求實(shí)數(shù)值;
(2)若不等式對(duì)任意的實(shí)數(shù)及恒成立,求實(shí)數(shù)的取值范圍;
(3)設(shè),且數(shù)列的前項(xiàng)和為,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)若時(shí),關(guān)于的方程有唯一解,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com