【題目】已知橢圓上一點關(guān)于原點的對稱點為,為其右焦點,若,設(shè),且,則該橢圓的離心率的取值范圍是( )

A. B.

C. D.

【答案】B

【解析】

橢圓=1(ab0)焦點在x軸上,四邊形AFF1B為長方形.根據(jù)橢圓的定義:

|AF|+|AF1|=2a,ABF=α,則∠AF1F=α.橢圓的離心率e===,α[

],sin(α+1,﹣1,即可求得橢圓離心率e的取值范圍.

橢圓=1(ab0)焦點在x軸上,

橢圓上點A關(guān)于原點的對稱點為點B,F(xiàn)為其右焦點,設(shè)左焦點為F1,連接AF,AF1,BF,

BF1,

∴四邊形AFF1B為長方形.

根據(jù)橢圓的定義:|AF|+|AF1|=2a,

ABF=α,則:∠AF1F=α.

2a=2ccosα+2csinα

橢圓的離心率e===,α[,],

α+,

則:sin(α+1,

﹣1,

∴橢圓離心率e的取值范圍:

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)圖象上不同兩點,處的切線的斜率分別是,規(guī)定為線段的長度)叫做曲線在點與點之間的“彎曲度”,給出以下命題:

①函數(shù)圖象上兩點的橫坐標(biāo)分別為,則;

②存在這樣的函數(shù),其圖象上任意不同兩點之間的“彎曲度”為常數(shù);

③設(shè),是拋物線上不同的兩點,則 ;

④設(shè), 是曲線是自然對數(shù)的底數(shù))上不同的兩點,則

其中真命題的個數(shù)為( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是2018年第一季度五省GDP情況圖,則下列描述中不正確的是( )

A. 與去年同期相比2018年第一季度五個省的GDP總量均實現(xiàn)了增長

B. 2018年第一季度GDP增速由高到低排位第5的是浙江省

C. 2018年第一季度GDP總量和增速由高到低排位均居同一位的省只有1

D. 去年同期河南省的GDP總量不超過4000億元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市民用水?dāng)M實行階梯水價,每人用水量中不超過立方米的部分按4/立方米收費,超出立方米的部分按10/立方米收費,從該市隨機調(diào)查了10000位居民,獲得了他們某月的用水量數(shù)據(jù),整理得到如下頻率分布直方圖:

1)如果為整數(shù),那么根據(jù)此次調(diào)查,為使80%以上居民在該月的用水價格為4/立方米, 至少定為多少?

2)假設(shè)同組中的每個數(shù)據(jù)用該組區(qū)間的右端點值代替,當(dāng)時,估計該市居民該月的人均水費.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年11月21日,意大利奢侈品牌“”在廣告中涉嫌辱華,中國明星紛紛站出來抵制該品牌,隨后京東、天貓、唯品會等中國電商平臺全線下架了該品牌商品,當(dāng)天有大量網(wǎng)友關(guān)注此事件,某網(wǎng)上論壇從關(guān)注此事件跟帖中,隨機抽取了100名網(wǎng)友進(jìn)行調(diào)查統(tǒng)計,先分別統(tǒng)計他們在跟帖中的留言條數(shù),再把網(wǎng)友人數(shù)按留言條數(shù)分成6組:,,,,,得到如圖所示的頻率分布直方圖;

并將其中留言不低于40條的規(guī)定為“強烈關(guān)注”,否則為“一般關(guān)注”,對這100名網(wǎng)友進(jìn)一步統(tǒng)計得到列聯(lián)表的部分?jǐn)?shù)據(jù)如下表.

一般關(guān)注

強烈關(guān)注

合計

45

10

55

合計

100

(1)在答題卡上補全列聯(lián)表中數(shù)據(jù);并判斷能否有95%的把握認(rèn)為網(wǎng)友對此事件是否為“強烈關(guān)注”與性別有關(guān)?

(2)現(xiàn)已從“強烈關(guān)注”的網(wǎng)友中按性別分層抽樣選取了5人,再從這5人中選取2人,求這2人中至少有1名女性的概率.

參考公式及數(shù)據(jù):,

0.05

0.010

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

已知函數(shù),(

)討論函數(shù)的單調(diào)區(qū)間;

)設(shè)函數(shù)在區(qū)間內(nèi)是減函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正五邊形的對角線分別與對角線、交于點,對角線分別與對角線、交于點、,對角線與對角線交于點. 設(shè)由圖2中的10個點、、、、、、、和線段構(gòu)成的等腰三角形的集合為.

(1)求中元素的數(shù)目;

(2)若將這10個點中的每個點任意染為紅、藍(lán)兩種顏色之一,問是否一定存在中的一個等腰三角形,其三個頂點同色?

(3)若將這10個點中的任意個點染為紅色,使得一定存在中的一個等腰三角形,其三個頂點同為紅色,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)行的個稅法修正案規(guī)定:個稅免征額由原來的2000元提高到3500元,并給出了新的個人所得稅稅率表:

全月應(yīng)納稅所得額

稅率

不超過1500元的部分

3%

超過1500元至4500元的部分

10%

超過4500元至9000元的部分

20%

超過9000元至35000元的部分

25%

……

例如某人的月工資收入為5000元,那么他應(yīng)納個人所得稅為:(元).

(Ⅰ)若甲的月工資收入為6000元,求甲應(yīng)納的個人收的稅;

(Ⅱ)設(shè)乙的月工資收入為元,應(yīng)納個人所得稅為元,求關(guān)于的函數(shù);

(Ⅲ)若丙某月應(yīng)納的個人所得稅為1000元,給出丙的月工資收入.(結(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是圓上的任意一點,是過點且與軸垂直的直線,是直線軸的交點,點在直線上,且滿足.當(dāng)點在圓上運動時,記點的軌跡為曲線.

(1)求曲線的方程;

(2)已知直線與曲線交于,兩點,點關(guān)于軸的對稱點為,證明:直線過定點.

查看答案和解析>>

同步練習(xí)冊答案