在△ABC中,a、b、c分別為角A、B、C所對的邊,若a=2,b=2
2
,A=30°,則B等于(  )
A、45°
B、45°或135°
C、135°
D、30°或150°
分析:由A的度數(shù)求出sinA的值,然后再由a與b的值,利用正弦定理求出sinB的值,由A的范圍,根據(jù)三角形的內角和定理求出B的范圍,利用特殊角的三角函數(shù)值即可求出B的度數(shù).
解答:解:由a=2,b=2
2
,A=30°,
根據(jù)正弦定理
a
sinA
=
b
sinB
得:
sinB=
bsinA
a
=
2
2
×
1
2
2
=
2
2

又A=30°,得到0<B<150°,
則B=45°或135°.
故選B
點評:此題考查了正弦定理,以及特殊角的三角函數(shù)值,熟練掌握正弦定理是解本題的關鍵,學生求B度數(shù)時注意先求出B的范圍.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,∠A、∠B、∠C所對的邊長分別是a、b、c.滿足2acosC+ccosA=b.則sinA+sinB的最大值是(  )
A、
2
2
B、1
C、
2
D、
1+
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,a<b<c,B=60°,面積為10
3
cm2,周長為20cm,求此三角形的各邊長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,a,b,c分別為角A,B,C的對邊,已知
.
m
=(cos
C
2
,sin
C
2
)
,
.
n
=(cos
C
2
,-sin
C
2
)
,且
m
n
=
1
2

(1)求角C;
(2)若a+b=
11
2
,△ABC的面積S=
3
3
2
,求邊c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,A,B,C為三個內角,若cotA•cotB>1,則△ABC是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知y=f(x)函數(shù)的圖象是由y=sinx的圖象經(jīng)過如下三步變換得到的:
①將y=sinx的圖象整體向左平移
π
6
個單位;
②將①中的圖象的縱坐標不變,橫坐標縮短為原來的
1
2

③將②中的圖象的橫坐標不變,縱坐標伸長為原來的2倍.
(1)求f(x)的周期和對稱軸;
(2)在△ABC中,a,b,c分別是角A,B,C的對邊,且f(C)=2,c=1,ab=2
3
,且a>b,求a,b的值.

查看答案和解析>>

同步練習冊答案