【題目】已知橢圓C: + =1(a>b>0)的離心率為 ,點(diǎn)B是橢圓C的上頂點(diǎn),點(diǎn)Q在橢圓C上(異于B點(diǎn)).
(Ⅰ)若橢圓V過(guò)點(diǎn)(﹣ , ),求橢圓C的方程;
(Ⅱ)若直線l:y=kx+b與橢圓C交于B、P兩點(diǎn),若以PQ為直徑的圓過(guò)點(diǎn)B,證明:存在k∈R, =

【答案】解:(Ⅰ)橢圓的離心率e= = = ,則a2=2b2 ,
將點(diǎn)(﹣ , )代入橢圓方程 ,解得:a2=4,b2=2,
∴橢圓的標(biāo)準(zhǔn)方程為:
(Ⅱ)由題意的對(duì)稱性可知:設(shè)存在存在k>0,使得 = ,
由a2=2b2 , 橢圓方程為: ,
將直線方程代入橢圓方程,整理得:(1+2k2)x2+4kbx=0,
解得:xP=﹣ ,則丨BP丨= ×
由BP⊥BQ,則丨BQ丨= ×丨 丨=
= .,則2 × =
整理得:2k3﹣2k2+4k﹣1=0,
設(shè)f(x)=2k3﹣2k2+4k﹣1,由f( )<0,f( )>0,
∴函數(shù)f(x)存在零點(diǎn),
∴存在k∈R, =
【解析】(Ⅰ)由橢圓的離心率公式求得a和b的關(guān)系,將(﹣ , )代入橢圓方程,即可求得a和b的值,求得橢圓方程;(Ⅱ)將直線方程代入橢圓方程,求得P的橫坐標(biāo),求得丨BP丨,利用直線垂直的斜率關(guān)系求得丨BQ丨,由 = ,根據(jù)函數(shù)零點(diǎn)的判斷即可存在k∈R, =

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市電視臺(tái)為了提高收視率而舉辦有獎(jiǎng)問(wèn)答活動(dòng),隨機(jī)對(duì)該市15~65歲的人群抽樣了 人,回答問(wèn)題統(tǒng)計(jì)結(jié)果及頻率分布直方圖如圖表所示.

(1)分別求出 的值;
(2)從第2,3,4組回答正確的人中用分層抽樣的方法抽取6人,則第2,3,4組每組應(yīng)各抽取多少人?
(3)在(2)的前提下,電視臺(tái)決定在所抽取的6人中隨機(jī)抽取2人頒發(fā)幸運(yùn)獎(jiǎng),求所抽取的人中第2組至少有1人獲得幸運(yùn)獎(jiǎng)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】
(1)求對(duì)稱軸是 軸,焦點(diǎn)在直線 上的拋物線的標(biāo)準(zhǔn)方程;
(2)過(guò)拋物線 焦點(diǎn) 的直線 它交于 兩點(diǎn),求弦 的中點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的離心率為 ,且過(guò)點(diǎn)
(Ⅰ)求橢圓 的方程;
(Ⅱ)設(shè)直線 與圓 相切于點(diǎn) ,且 與橢圓 只有一個(gè)公共點(diǎn) .
①求證:
②當(dāng) 為何值時(shí), 取得最大值?并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義表示不超過(guò)的最大整數(shù)為,記,二次函數(shù)與函數(shù)上有兩個(gè)不同的交點(diǎn),則的取值范圍是( )

A. B. C. D. 以上均不正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣ax+ ,其中a>0.
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)證明:(1+ )(1+ )(1+ )…(1+ )<e (n∈N* , n≥2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(普通班)學(xué)校食堂定期從某糧店以每噸 元的價(jià)格買大米,每次購(gòu)進(jìn)大米需支付運(yùn)輸勞務(wù)費(fèi) 元,已知食堂每天需要大米 噸,貯存大米的費(fèi)用為每噸每天 元,假定食堂每次均在用完大米的當(dāng)天購(gòu)買.

(1)該食堂每多少天購(gòu)買一次大米,能使平均每天所支付的費(fèi)用最少?

(2)糧店提出價(jià)格優(yōu)惠條件:一次購(gòu)買量不少于 噸時(shí),大米價(jià)格可享受九五折優(yōu)惠(即是原價(jià)的 ),問(wèn)食堂可否接受此優(yōu)惠條件?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠生產(chǎn)不同規(guī)格的一種產(chǎn)品,根據(jù)檢測(cè)標(biāo)準(zhǔn),其合格產(chǎn)品的質(zhì)量 與尺寸 之間滿足關(guān)系式 為大于 的常數(shù)),現(xiàn)隨機(jī)抽取6件合格產(chǎn)品,測(cè)得數(shù)據(jù)如下:

對(duì)數(shù)據(jù)作了處理,相關(guān)統(tǒng)計(jì)量的值如下表:

(1)根據(jù)所給數(shù)據(jù),求 關(guān)于 的回歸方程(提示:由已知, 的線性關(guān)系);
(2)按照某項(xiàng)指標(biāo)測(cè)定,當(dāng)產(chǎn)品質(zhì)量與尺寸的比在區(qū)間 內(nèi)時(shí)為優(yōu)等品,現(xiàn)從抽取的6件合格產(chǎn)品再任選3件,求恰好取得兩件優(yōu)等品的概率;
(附:對(duì)于一組數(shù)據(jù) ,其回歸直線 的斜率和截距的最小二乘法估計(jì)值分別為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,江的兩岸可近似地看出兩條平行的直線,江岸的一側(cè)有, 兩個(gè)蔬菜基地,江岸的另一側(cè)點(diǎn)處有一個(gè)超市.已知、、中任意兩點(diǎn)間的距離為千米,超市欲在之間建一個(gè)運(yùn)輸中轉(zhuǎn)站, , 兩處的蔬菜運(yùn)抵處后,再統(tǒng)一經(jīng)過(guò)貨輪運(yùn)抵處,由于 兩處蔬菜的差異,這兩處的運(yùn)輸費(fèi)用也不同.如果從處出發(fā)的運(yùn)輸費(fèi)為每千米元.從處出發(fā)的運(yùn)輸費(fèi)為每千米元,貨輪的運(yùn)輸費(fèi)為每千米元.

(1)設(shè),試將運(yùn)輸總費(fèi)用(單位:元)表示為的函數(shù),并寫(xiě)出自變量的取值范圍;

(2)問(wèn)中轉(zhuǎn)站建在何處時(shí),運(yùn)輸總費(fèi)用最小?并求出最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案