設(shè)A1,A2,A3,A4,A5是平面上給定的5個不同點(diǎn),則使
MA1
+
MA2
+
MA3
+
MA4
+
MA5
=
0
成立的點(diǎn)M的個數(shù)為(  )
A、0B、1C、5D、10
分析:根據(jù)題意,設(shè)出M與A1,A2,A3,A4,A5的坐標(biāo),結(jié)合題意,把M的坐標(biāo)用其他5個點(diǎn)的坐標(biāo)表示出來,進(jìn)而判斷M的坐標(biāo)x、y的解的組數(shù),進(jìn)而轉(zhuǎn)化可得答案.
解答:解:根據(jù)題意,設(shè)M的坐標(biāo)為(x,y),x,y解得組數(shù)即符合條件的點(diǎn)M的個數(shù),
再設(shè)A1,A2,A3,A4,A5的坐標(biāo)依次為(x1,y1),(x2,y2),(x3,y3),(x4,y4),(x5,y5);
MA1
+
MA2
+
MA3
+
MA4
+
MA5
=
0
成立,
則有x=
x1+x2+x3+x4+x5
5
,y=
y1+y2+y3+y4+y5
5
;
只有一組解,即符合條件的點(diǎn)M有且只有一個;
故選B.
點(diǎn)評:本題考查向量加法的運(yùn)用,注意引入點(diǎn)的坐標(biāo),把判斷點(diǎn)M的個數(shù)轉(zhuǎn)化為求其坐標(biāo)即關(guān)于x、y的方程組的解的組數(shù),易得答案.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a1,a2,a3成等比數(shù)列,其公比為2,則
a2a1+a3
的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A1,A2,A3,A4 是平面上給定的4個不同點(diǎn),則使
MA1
+
MA2
+
MA3
+
MA4
=
0
 成立的點(diǎn)M 的個數(shù)為( 。
A、0B、1C、2D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A1,A2,A3,A4,A5是空間中給定的5個不同的點(diǎn),則使
MA1
+
MA2
+
MA3
+
MA4
+
MA5
=
0
成立的點(diǎn)M的個數(shù)為
1
1
個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選作題,本題包括A、B、C、D四小題,請選定其中兩題,并在相應(yīng)的答題區(qū)域內(nèi)作答.若多做,則按作答的前兩題評分.解答時應(yīng)寫出文字說明、證明過程或演算步驟.
A.(幾何證明選講)
如圖,AB是半圓的直徑,C是AB延長線上一點(diǎn),CD切半圓于點(diǎn)D,CD=2,DE⊥AB,垂足為E,且E是OB的中點(diǎn),求BC的長.
B.(矩陣與變換)
已知矩陣
12
2a
的屬于特征值b的一個特征向量為
1
1
,求實(shí)數(shù)a、b的值.
C.(極坐標(biāo)與參數(shù)方程)
在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(1,-2)在曲線
x=2pt2
y=2pt
(t為參數(shù),p為正常數(shù)),求p的值.
D.(不等式選講)
設(shè)a1,a2,a3均為正數(shù),且a1+a2+a3=1,求證:
1
a1
+
1
a2
+
1
a3
≥9

查看答案和解析>>

同步練習(xí)冊答案