【題目】已知函數(shù)f(x)=lnx+x2 .
(Ⅰ)求函數(shù)h(x)=f(x)﹣3x的極值;
(Ⅱ)若函數(shù)g(x)=f(x)﹣ax在定義域內(nèi)為增函數(shù),求實(shí)數(shù)a的取值范圍.
【答案】解:(Ⅰ)由已知,得h(x)=f(x)﹣3x=lnx+x2﹣3x, (x>0),
令 =0,得x= 或x=1,
∴當(dāng)x∈(0, )∪(1,+∞)時(shí),h′(x)>0,當(dāng)x∈( )時(shí),h′(x)<0,
∴h(x)在(0, ),(1,+∞)上為增函數(shù),在( )上為減函數(shù).
∴h(x)極小值=h(1)=﹣2, ;
(Ⅱ)g(x)=f(x)﹣ax=lnx+x2﹣ax,g′(x)= ,
由題意,知g′(x)≥0(x>0)恒成立,
即a≤ .
∵x>0時(shí),2x+ ,當(dāng)且僅當(dāng)x= 時(shí)等號(hào)成立.
故 ,
∴a .
【解析】(Ⅰ)由已知得到h(x),求其導(dǎo)函數(shù),解得導(dǎo)函數(shù)的零點(diǎn),由導(dǎo)函數(shù)的零點(diǎn)對(duì)定義域分段,求得函數(shù)的單調(diào)區(qū)間,進(jìn)一步求得極值;(Ⅱ)由函數(shù)g(x)=f(x)﹣ax在定義域內(nèi)為增函數(shù),可得g′(x)≥0(x>0)恒成立,分離參數(shù)a,利用基本不等式求得最值得答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l:mx﹣y﹣m+2=0與圓C:x2+y2+4x﹣4=0交于A,B兩點(diǎn),若△ABC為直角三角形,則m= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某校組織的一次籃球定點(diǎn)投籃訓(xùn)練中,規(guī)定每人最多投3次,在A處每投進(jìn)一球得3分,在B處每投進(jìn)一球得2分;如果前兩次得分之和超過(guò)3分即停止投籃,否則投第三次,某同學(xué)在A處的命中率為0.25,在B處的命中率為0.8,該同學(xué)選擇先在A處投一球,以后都在B處投,用X表示該同學(xué)投籃訓(xùn)練結(jié)束后所得的總分.
(1)求該同學(xué)投籃3次的概率;
(2)求隨機(jī)變量X的數(shù)學(xué)期望E(X).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】要建造一個(gè)容積為1 600立方米,深為4米的長(zhǎng)方體無(wú)蓋蓄水池,池壁的造價(jià)為每平方米200元,池底的造價(jià)為每平方米100元.
(1)把總造價(jià)y元表示為池底的一邊長(zhǎng)x米的函數(shù);
(2)由于場(chǎng)地原因,蓄水池的一邊長(zhǎng)不能超過(guò)20米,問(wèn)蓄水池的這個(gè)底邊長(zhǎng)為多少時(shí)總造價(jià)最低?總造價(jià)最低是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,∈[1,+∞).
(1)當(dāng)時(shí),判斷函數(shù)的單調(diào)性并證明;
(2)當(dāng)時(shí),求函數(shù)的最小值;
(3)若對(duì)任意∈[1,+∞),>0恒成立,試求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,正方體ABCD﹣A1B1C1D1的棱長(zhǎng)為a,M,N分別為A1B和AC上的點(diǎn),A1M=AN= ,則MN與平面BB1C1C的位置關(guān)系為( )
A.相交
B.平行
C.垂直
D.不能確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校某研究性學(xué)習(xí)小組在對(duì)學(xué)生上課注意力集中情況的調(diào)查研究中,發(fā)現(xiàn)其在40分鐘的一節(jié)課中,注意力指數(shù)y與聽課時(shí)間x(單位:分鐘)之間的關(guān)系滿足如圖所示的圖象,當(dāng)x∈(0,12]時(shí),圖象是二次函數(shù)圖象的一部分,其中頂點(diǎn)A(10,80),過(guò)點(diǎn)B(12,78);當(dāng)x∈[12,40]時(shí),圖象是線段BC,其中C(40,50).根據(jù)專家研究,當(dāng)注意力指數(shù)大于62時(shí),學(xué)習(xí)效果最佳.
(1)試求y=f(x)的函數(shù)關(guān)系式;
(2)教師在什么時(shí)段內(nèi)安排內(nèi)核心內(nèi)容,能使得學(xué)生學(xué)習(xí)效果最佳?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l1過(guò)點(diǎn)A(0,1),l2過(guò)點(diǎn)B(5,0),如果l1∥l2,且l1與l2間的距離為5,求l1、l2的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com