【題目】已知函數(shù),且曲線在點處的切線與軸垂直.

(I)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若對任意(其中為自然對數(shù)的底數(shù)),都有恒成立,求的取值范圍.

【答案】(Ⅰ)單調(diào)減區(qū)間為,單調(diào)增區(qū)間為.

(Ⅱ) .

【解析】試題分析:

(Ⅰ)由導數(shù)的幾何意義及條件可得,解得.然后由導函數(shù)大于(小于)零可得函數(shù)的單調(diào)區(qū)間.(Ⅱ)由(Ⅰ)可得,令 ,結(jié)合導數(shù)可得時,單調(diào)遞減,故.由,可得.然后再驗證當時,成立即可.本題也可分為兩種情況分別求出的取值范圍,然后取其并集即可.

試題解析

(Ⅰ)的定義域為,

,定義域為,

由題意知,解得,

,

,解得;由,解得,

的單調(diào)減區(qū)間為,單調(diào)增區(qū)間為.

(Ⅱ)由(Ⅰ)知

法一:設,則

,則,

時,,故上單調(diào)遞減,

,

時,,單調(diào)遞減,

時,,

由題意知,又

.

下面證明當時,成立,

即證成立,

,則,

,得是增函數(shù),

時,

成立,即成立,

故正數(shù)的取值范圍是.

法二:①當時,可化為,

,則問題轉(zhuǎn)化為證明對任意恒成立.

,得,令,得,

∴函數(shù)上單調(diào)遞增,在上單調(diào)遞減.

時,下面驗證.

,則.

所以上單調(diào)遞減,

所以.即.

故此時不滿足對任意恒成立;

時,函數(shù)上單調(diào)遞增.

對任意恒成立,

符合題意.

綜合,.

②當時,,則問題轉(zhuǎn)化為證明對任意恒成立.

;令,得,

∴函數(shù)上單調(diào)遞增,在上單調(diào)遞減.

時,上是增函數(shù),所以

時,上單調(diào)遞增,在上單調(diào)遞減,

所以只需,即

時,上單調(diào)遞減,則需.

因為不符合題意.

綜合可得.

由①②得正數(shù)的取值范圍是

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱ABC-A1B1C1中,BB1⊥平面ABC,∠BAC=90°AC=AB=AA1,EBC的中點.

1)求證:AEB1C

2)求異面直線AEA1C所成的角的大;

3)若GC1C中點,求二面角C-AG-E的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若動點在直線上,動點Q在直線上,記線段的中點為

,且,則的取值范圍為 ________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】進入冬天,大氣流動性變差,容易形成霧握天氣,從而影響空氣質(zhì)量.某城市環(huán)保部門試圖探究車流量與空氣質(zhì)量的相關性,以確定是否對車輛實施限行.為此,環(huán)保部門采集到該城市過去一周內(nèi)某時段車流量與空氣質(zhì)量指數(shù)的數(shù)據(jù)如下表:

(1)根據(jù)表中周一到周五的數(shù)據(jù),求y關于x的線性回歸方程。

(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2,則認為得到的線性回歸方程是可靠的.請根據(jù)周六和周日數(shù)據(jù),判定所得的線性回歸方程是否可靠?

注:回歸方程中斜率和截距最小二乘估計公式分別為.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題說法中正確的是

A. 對于實數(shù),“”是的充分不必要條件

B. 已知都是整數(shù),則命題“若,則不都是奇數(shù)”是假命題

C. “若,則關于的方程有實根”的逆否命題為假命題

D. 命題“全等三角形的面積相等”的否命題為真命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】假設關于某設備的使用年限(年)和所支出的年平均維修費用(萬元)(即維修費用之和除以使用年限),有如下的統(tǒng)計資料:

使用年限

2

3

4

5

6

維修費用

2.2

3.8

5.5

6.5

7.0

(1)畫出散點圖;

(2)求關于的線性回歸方程;

(3)估計使用年限為10年時所支出的年平均維修費用是多少?

參考公式:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】按照國家質(zhì)量標準:某種工業(yè)產(chǎn)品的質(zhì)量指標值落在[100,120)內(nèi),則為合格品,否則為不合格品.某企業(yè)有甲乙兩套設備生產(chǎn)這種產(chǎn)品,為了檢測這兩套設備的生產(chǎn)質(zhì)量情況,隨機從兩套設備生產(chǎn)的大量產(chǎn)品中各抽取了50件產(chǎn)品作為樣本對規(guī)定的質(zhì)量指標值進行檢測.表1是甲套設備的樣本頻數(shù)分布表,圖1是乙套設備的樣本頻率分布直方圖.

質(zhì)量指標值

[95,100)

[100,105)

[105,110)

[110,115)

[115,120)

[120,125]

頻數(shù)

1

4

19

20

5

1

表1:甲套設備的樣本頻數(shù)分布表

(1)將頻率視為概率,若乙套設備生產(chǎn)了5000件產(chǎn)品,則其中合格品約有多少件?

(2)填寫下面2×2列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有95%的把握認為這種產(chǎn)品的質(zhì)量指標值與甲乙兩套設備的選擇有關:

甲套設備

乙套設備

合計

合格品

不合格品

合計

(3)根據(jù)表和圖,對甲、乙兩套設備的優(yōu)劣進行比較.參考公式及數(shù)據(jù):x2=

P(Х2≥k)

0.100

0.050

0.010

k

2.706

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以平面直角坐標系的原點為極點,軸的正半軸為極軸,建立極坐標系,已知直線的參數(shù)方程是 (m>0,t為參數(shù)),曲線的極坐標方程為

(1)求直線的普通方程和曲線的直角坐標方程;

(2)若直線軸交于點,與曲線交于點,且,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】按照國家質(zhì)量標準:某種工業(yè)產(chǎn)品的質(zhì)量指標值落在[100,120)內(nèi),則為合格品,否則為不合格品.某企業(yè)有甲乙兩套設備生產(chǎn)這種產(chǎn)品,為了檢測這兩套設備的生產(chǎn)質(zhì)量情況,隨機從兩套設備生產(chǎn)的大量產(chǎn)品中各抽取了50件產(chǎn)品作為樣本對規(guī)定的質(zhì)量指標值進行檢測.表1是甲套設備的樣本頻數(shù)分布表,圖1是乙套設備的樣本頻率分布直方圖.

質(zhì)量指標值

[95,100)

[100,105)

[105,110)

[110,115)

[115,120)

[120,125]

頻數(shù)

1

4

19

20

5

1

表1:甲套設備的樣本頻數(shù)分布表

(1)將頻率視為概率,若乙套設備生產(chǎn)了5000件產(chǎn)品,則其中合格品約有多少件?

(2)填寫下面2×2列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有95%的把握認為這種產(chǎn)品的質(zhì)量指標值與甲乙兩套設備的選擇有關:

甲套設備

乙套設備

合計

合格品

不合格品

合計

(3)根據(jù)表和圖,對甲、乙兩套設備的優(yōu)劣進行比較.參考公式及數(shù)據(jù):x2=

P(Х2≥k)

0.100

0.050

0.010

k

2.706

3.841

6.635

查看答案和解析>>

同步練習冊答案