【題目】已知函數(shù),為自然對數(shù)的底數(shù)).

1)討論函數(shù)在定義域內(nèi)極值點的個數(shù);

2)設(shè)直線為函數(shù)的圖象上一點處的切線,證明:在區(qū)間上存在唯一的,使得直線與曲線相切.

【答案】1)當時,函數(shù)無極值點,當時,函數(shù)有兩個極值點(2)證明見解析

【解析】

1)對函數(shù)求導(dǎo)得,令,分類討論有無零點以及零點與、的相對位置即可得解;

2)由題意可得切線的方程可表示為,設(shè)直線與曲線相切于點,由題意可得,進而可得,由(1)中結(jié)論即可證明上存在唯一的根,即可得證.

1)由題意,

,

,

①當時,,

此時,單調(diào)遞增,無極值點;

②當時,即當時,

函數(shù)有兩個零點,

,

i)當時,

因為,

所以,

所以函數(shù)單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,此時函數(shù)有兩個極值點;

ii)當時,因為,

所以,此時,單調(diào)遞增,無極值點.

綜上所述,當時,函數(shù)無極值點,當時,函數(shù)有兩個極值點.

2)證明:因為,所以切線的方程可表示為

設(shè)直線與曲線相切于點,

因為,所以

消去并整理得,

由(1)可知,當時,函數(shù)單調(diào)遞增,

.

所以函數(shù)上有唯一的零點,

又因為單調(diào)遞增,

所以方程上存在唯一的根,

故在區(qū)間上存在唯一的,使得直線與曲線相切.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,直線將矩形紙分為兩個直角梯形,將梯形沿邊翻折,如圖2,在翻折的過程中(平面和平面不重合),下面說法正確的是

圖1 圖2

A.存在某一位置,使得平面

B.存在某一位置,使得平面

C.在翻折的過程中,平面恒成立

D.在翻折的過程中,平面恒成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大型公司為了切實保障員工的健康安全,貫徹好衛(wèi)生防疫工作的相關(guān)要求,決定在全公司范圍內(nèi)舉行一次普查,為此需要抽驗1000人的血樣進行化驗,由于人數(shù)較多,檢疫部門制定了下列兩種可供選擇的方案.方案①:將每個人的血分別化驗,這時需要驗1000.方案②:按個人一組進行隨機分組,把從每組個人抽來的血混合在一起進行檢驗,如果每個人的血均為陰性,則驗出的結(jié)果呈陰性,這個人的血只需檢驗一次(這時認為每個人的血化驗);否則,若呈陽性,則需對這個人的血樣再分別進行一次化驗,這樣,該組個人的血總共需要化驗.假設(shè)此次普查中每個人的血樣化驗呈陽性的概率為,且這些人之間的試驗反應(yīng)相互獨立.

1)設(shè)方案②中,某組個人的每個人的血化驗次數(shù)為,求的分布列;

2)設(shè),試比較方案②中,分別取2,3,4時,各需化驗的平均總次數(shù);并指出在這三種分組情況下,相比方案①,化驗次數(shù)最多可以平均減少多少次?(最后結(jié)果四舍五入保留整數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓,右焦點為,是斜率為的弦,的中點為,的垂直平分線交橢圓于,兩點,的中點為.當時,直線的斜率為為坐標原點).

1)求橢圓的標準方程;

2)設(shè)原點到直線的距離為,求的取值范圍;

3)若直線,直線的斜率滿足,判斷并證明是否為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】20名學(xué)生某次數(shù)學(xué)考試成績(單位:分)的頻率分布直方圖如下:

(1)求頻率直方圖中a的值;

(2)分別求出成績落在[50,60)與[60,70)中的學(xué)生人數(shù);

(3)從成績在[50,70)的學(xué)生中人選2人,求這2人的成績都在[60,70)中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下圖是民航部門統(tǒng)計的某年春運期間,六個城市售出的往返機票的平均價格(單位元),以及相比于上一年同期價格變化幅度的數(shù)據(jù)統(tǒng)計圖,以下敘述正確的是(

A.深圳的變化幅度最小,北京的平均價格最高

B.天津的往返機票平均價格變化最大

C.上海和廣州的往返機票平均價格基本相當

D.相比于上一年同期,其中四個城市的往返機票平均價格在增加

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標系中,長為3的線段的兩端點分別在軸、軸上滑動,點為線段上的點,且滿足.記點的軌跡為曲線.

1)求曲線的方程;

2)若點為曲線上的兩個動點,記,判斷是否存在常數(shù)使得點到直線的距離為定值?若存在,求出常數(shù)的值和這個定值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種產(chǎn)品的質(zhì)量以其質(zhì)量指標值衡量,并依據(jù)質(zhì)量指標值劃分等級如下表:

從某企業(yè)生產(chǎn)的這種產(chǎn)品中抽取200件,檢測后得到如下的頻率分布直方圖:

(1)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“一、二等品至少要占全部產(chǎn)品”的規(guī)定?

(2)在樣本中,按產(chǎn)品等級用分層抽樣的方法抽取8件,再從這8件產(chǎn)品中隨機抽取4件,求抽取的4件產(chǎn)品中,一、二、三等品都有的概率;

(3)該企業(yè)為提高產(chǎn)品質(zhì)量,開展了“質(zhì)量提升月”活動,活動后再抽樣檢測,產(chǎn)品質(zhì)量指標值近似滿足,則“質(zhì)量提升月”活動后的質(zhì)量指標值的均值比活動前大約提升了多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列五個命題,其中正確命題的個數(shù)為(

①命題,使得的否定是,均有;

②若正整數(shù)滿足,則;

③在 ,的充要條件;

④一條光線經(jīng)過點,射在直線上,反射后穿過點,則入射光線所在直線的方程為;

⑤已知的三個零點分別為一橢圓、一雙曲線、一拋物線的離心率,則為定值.

A.2B.3C.4D.5

查看答案和解析>>

同步練習(xí)冊答案