【題目】在直三棱柱中,是棱的中點(diǎn).
(1)證明:直線平面;
(2)若,,證明:平面平面.
【答案】(1)證明見解析(2)證明見解析
【解析】
(1)設(shè)與的交點(diǎn)為,連接,推導(dǎo)出,結(jié)合線面平行的判定定理,即可求解;
(2)推導(dǎo)出四邊形為菱形,從而得到,證得平面,得到,再由,得出平面,進(jìn)而結(jié)合面面垂直的判定定理,即可證得平面平面.
(1)設(shè)與的交點(diǎn)為,連接,如圖所示,
在直三棱柱中,得側(cè)面四邊形是平行四邊形,
∴點(diǎn)為的中點(diǎn).
又∵是棱的中點(diǎn),
在中,為中位線,可得.
而平面,平面,所以直線平面.
(2)∵側(cè)面四邊形是平行四邊形,,
∴四邊形為菱形,所以,
在直三棱柱中,得平面,
又因?yàn)?/span>平面,所以,
又由,平面,平面,,
所以平面,
又∵平面,所以,
又有,平面,平面,,
∴平面,
又∵平面,
∴平面平面.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【選修4-4:坐標(biāo)系與參數(shù)方程】
在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系.已知曲線的極坐標(biāo)方程為.傾斜角為,且經(jīng)過定點(diǎn)的直線與曲線交于兩點(diǎn).
(Ⅰ)寫出直線的參數(shù)方程的標(biāo)準(zhǔn)形式,并求曲線的直角坐標(biāo)方程;
(Ⅱ)求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為促進(jìn)全面健身運(yùn)動,某地跑步團(tuán)體對本團(tuán)內(nèi)的跑友每周的跑步千米數(shù)進(jìn)行統(tǒng)計(jì),隨機(jī)抽取的100名跑友,分別統(tǒng)計(jì)他們一周跑步的千米數(shù),并繪制了如圖頻率分布直方圖.
(1)由頻率分布直方圖計(jì)算跑步千米數(shù)不小于70千米的人數(shù);
(2)已知跑步千米數(shù)在的人數(shù)是跑步千米數(shù)在的,跑步千米數(shù)在的人數(shù)是跑步千米數(shù)在的,現(xiàn)在從跑步千米數(shù)在的跑友中抽取3名代表發(fā)言,用表示所選的3人中跑步千米數(shù)在的人數(shù),求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一袋中有大小、形狀相同的2個(gè)白球和10個(gè)黑球,從中任取一球.如果取出白球,則把它放回袋中;如果取出黑球,則該球不再放回,另補(bǔ)一個(gè)白球放到袋中.在重復(fù)次這樣的操作后,記袋中的白球個(gè)數(shù)為.
(1)求;
(2)設(shè),求;
(3)證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司計(jì)劃購買1臺機(jī)器,該種機(jī)器使用三年后即被淘汰.在購進(jìn)機(jī)器時(shí),可以一次性額外購買幾次維修服務(wù),每次維修服務(wù)費(fèi)用200元,另外實(shí)際維修一次還需向維修人員支付小費(fèi),小費(fèi)每次50元.在機(jī)器使用期間,如果維修次數(shù)超過購機(jī)時(shí)購買的維修服務(wù)次數(shù),則每維修一次需支付維修服務(wù)費(fèi)用500元,無需支付小費(fèi).現(xiàn)需決策在購買機(jī)器時(shí)應(yīng)同時(shí)一次性購買幾次維修服務(wù),為此搜集并整理了100臺這種機(jī)器在三年使用期內(nèi)的維修次數(shù),得下面統(tǒng)計(jì)表:
維修次數(shù) | 8 | 9 | 10 | 11 | 12 |
頻數(shù) | 10 | 20 | 30 | 30 | 10 |
記表示1臺機(jī)器在三年使用期內(nèi)的維修次數(shù),表示1臺機(jī)器在維修上所需的費(fèi)用(單位:元),表示購機(jī)的同時(shí)購買的維修服務(wù)次數(shù).
(1)若,求與的函數(shù)解析式;
(2)若要求“維修次數(shù)不大于”的頻率不小于0.8,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,且滿足:
(1)證明:是等比數(shù)列,并求數(shù)列的通項(xiàng)公式.
(2)設(shè),若數(shù)列是等差數(shù)列,求實(shí)數(shù)的值;
(3)在(2)的條件下,設(shè) 記數(shù)列的前項(xiàng)和為,若對任意的存在實(shí)數(shù),使得,求實(shí)數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2020年開始,國家逐步推行全新的高考制度.新高考不再分文理科,采用3+3模式,其中語文、數(shù)學(xué)、外語三科為必考科目,滿分各150分,另外考生還要依據(jù)想考取的高校及專業(yè)的要求,結(jié)合自己的興趣愛好等因素,在思想政治、歷史、地理、物理、化學(xué)、生物6門科目中自選3門參加考試(6選3),每科目滿分100分.為了應(yīng)對新高考,某高中從高一年級1000名學(xué)生(其中男生550人,女生 450 人)中,采用分層抽樣的方法從中抽取名學(xué)生進(jìn)行調(diào)查.
(1)已知抽取的名學(xué)生中含女生45人,求的值及抽取到的男生人數(shù);
(2)學(xué)校計(jì)劃在高一上學(xué)期開設(shè)選修中的“物理”和“地理”兩個(gè)科目,為了了解學(xué)生對這兩個(gè)科目的選課情況,對在(1)的條件下抽取到的名學(xué)生進(jìn)行問卷調(diào)查(假定每名學(xué)生在這兩個(gè)科目中必須選擇一個(gè)科目且只能選擇一個(gè)科目),下表是根據(jù)調(diào)查結(jié)果得到的列聯(lián)表. 請將列聯(lián)表補(bǔ)充完整,并判斷是否有 99%的把握認(rèn)為選擇科目與性別有關(guān)?說明你的理由;
(3)在抽取的選擇“地理”的學(xué)生中按分層抽樣再抽取6名,再從這6名學(xué)生中抽取2人了解學(xué)生對“地理”的選課意向情況,求2人中至少有1名男生的概率.
0.05 | 0.01 | |
3.841 | 6.635 |
參考公式:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB、PA、PBC分別為⊙O的切線和割線,切點(diǎn)A是BD的中點(diǎn),AC、BD相交于點(diǎn)E,AB、PE相交于點(diǎn)F,直線CF交⊙O于另一點(diǎn)G、交PA于點(diǎn)K.
證明:(1)K是PA的中點(diǎn);(2)..
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐P-ABCD中,底面ABCD是直角梯形,AD//BC,BC=2AD,AD⊥CD,PD⊥平面ABCD,E為PB的中點(diǎn).
(1)求證:AE//平面PDC;
(2)若BC=CD=PD,求直線AC與平面PBC所成角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com