【題目】如圖,菱形與正三角形的邊長均為,它們所在平面互相垂直,平面平面.

1)求證:平面平面;

2)若,求三棱錐的體積.

【答案】1)證明見解析;(2.

【解析】

1)推導出,從而平面,由此能證明平面平面;

2)取中點,連接、,過點作點,推導出四邊形為平行四邊形,可得,進而可證明出平面,并推導出平面,可得出三棱錐的高為,利用錐體的體積公式可求得結(jié)果.

1)在菱形中,

平面,平面,,

,平面,

平面平面平面;

2)取中點,連接、,

為正三角形,,

平面平面,交線為,平面,平面,

平面,

平面,平面平面,平面,

四邊形為平行四邊形,,

點作點,

平面平面,平面平面,平面

平面,

平面,平面平面,

的長為到平面的距離,

因此,三棱錐的體積為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知某校有歌唱和舞蹈兩個興趣小組,其中歌唱組有 4 名男生,1 名女生,舞蹈組有2 名男生,2 名女生,學校計劃從兩興趣小組中各選2名同學參加演出.

(1)求選出的4名同學中至多有2名女生的選派方法數(shù);

(2)記X為選出的4名同學中女生的人數(shù),求X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“總把新桃換舊符”(王安石)、“燈前小草寫桃符”(陸游),春節(jié)是中華民族的傳統(tǒng)節(jié)日,在宋代人們用寫“桃符”的方式來祈福避禍,而現(xiàn)代人們通過貼“!弊帧①N春聯(lián)、掛燈籠等方式來表達對新年的美好祝愿,某商家在春節(jié)前開展商品促銷活動,顧客凡購物金額滿50元,則可以從“!弊帧⒋郝(lián)和燈籠這三類禮品中任意免費領(lǐng)取一件,若有4名顧客都領(lǐng)取一件禮品,則他們中有且僅有2人領(lǐng)取的禮品種類相同的概率是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若如圖所示的程序框圖輸出的S是126,則n條件為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知向量,,且.記動點的軌跡為.

1)求的方程;

2)已知直線過坐標原點,且與(1)中的軌跡交于兩點,在第三象限,且軸,垂足為,連接并延長交于點,求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點O為坐標原點,橢圓C:(a>b>0)的左、右焦點分別為F1,F(xiàn)2,離心率為,點I,J分別是橢圓C的右頂點、上頂點,IOJ的邊IJ上的中線長為

(1)求橢圓C的標準方程;

(2)過點H(-2,0)的直線交橢圓C于A,B兩點,若AF1⊥BF1,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,橢圓C的中心在坐標原點O,其右焦點為,且點在橢圓C上.

求橢圓C的方程;

設(shè)橢圓的左、右頂點分別為A、BM是橢圓上異于A,B的任意一點,直線MF交橢圓C于另一點N,直線MB交直線Q點,求證:A,NQ三點在同一條直線上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某網(wǎng)購平臺為了解某市居民在該平臺的消費情況,從該市使用其平臺且每周平均消費額超過100元的人員中隨機抽取了100名,并繪制如圖所示頻率分布直方圖,已知中間三組的人數(shù)可構(gòu)成等差數(shù)列.

(1)求的值;

2)分析人員對100名調(diào)查對象的性別進行統(tǒng)計發(fā)現(xiàn),消費金額不低于300元的男性有20人,低于300元的男性有25人,根據(jù)統(tǒng)計數(shù)據(jù)完成下列列聯(lián)表,并判斷是否有的把握認為消費金額與性別有關(guān)?

(3)分析人員對抽取對象每周的消費金額與年齡進一步分析,發(fā)現(xiàn)他們線性相關(guān),得到回歸方程.已知100名使用者的平均年齡為38歲,試判斷一名年齡為25歲的年輕人每周的平均消費金額為多少.(同一組數(shù)據(jù)用該區(qū)間的中點值代替)

列聯(lián)表

男性

女性

合計

消費金額

消費金額

合計

臨界值表:

0.050

0.010

0.001

3.841

6.635

10.828

,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)的極值點的個數(shù);

2)若有兩個極值點,證明:.

查看答案和解析>>

同步練習冊答案