【題目】如圖,在平行四邊形中,,,,分別是和的中點,將沿著向上翻折到的位置,連接,.
(1)求證:平面;
(2)若翻折后,四棱錐的體積,求的面積.
【答案】(1)證明見解析;(2).
【解析】
(1)取的中點,連接,由平面幾何知識可得四邊形是平行四邊形,從而可得,根據(jù)線面平行的判斷定理可得證;
(2)取的中點,連接,過作的垂線于點,連接根據(jù)平面幾何知識和四棱錐的體積,可得出平面,繼而可證得 是的高,根據(jù)三角形的面積公式可求得值.
(1)取的中點,連接,∵是的中點,∴
又∵是的中點,∴
∴,∴四邊形是平行四邊形,∴,
又∵平面,平面,
∴平面;
(2)取的中點,連接,過作的垂線于點,連接則
∵四棱錐的體積,而四邊形的面積為,
設四棱錐的高為,則解得,∴,∴平面,
又∵平面,∴,又∵,∴平面,
又平面,∴,∴是的高,而在中,,
∴的面積.
科目:高中數(shù)學 來源: 題型:
【題目】已知平面平面ABC,P、P在平面ABC的同側(cè),二面角的平面角為鈍角,Q到平面ABC的距離為,是邊長為2的正三角形,,,.
(1)求證:面平面PAB;
(2)求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,求函數(shù)的極值;
(2)設函數(shù)在處的切線方程為,若函數(shù)是上的單調(diào)增函數(shù),求的值;
(3)是否存在一條直線與函數(shù)的圖象相切于兩個不同的點?并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義在上的函數(shù).
(1)當時,寫出的單調(diào)區(qū)間;
(2)若關(guān)于的方程有三個不等的實根,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).(其中為自然對數(shù)的底數(shù))
(1)若恒成立,求的最大值;
(2)設,若存在唯一的零點,且對滿足條件的不等式恒成立,求實數(shù)的取值集合.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的左、右頂點分別為,,右焦點為,且上的動點到的距離的最大值為4,最小值為2.
(1)證明:.
(2)若直線:與相交于,兩點(,均不與,重合),且,試問是否經(jīng)過定點?若經(jīng)過,求出此定點坐標;若不經(jīng)過,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義在D上的函數(shù),如果滿足:對任意,存在常數(shù),都有成立,則稱是D上的有界函數(shù),其中M稱為函數(shù)的上界已知函數(shù)
當,求函數(shù)在上的值域,并判斷函數(shù)在上是否為有界函數(shù),請說明理由;
若函數(shù)在上是以3為上界的有界函數(shù),求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com