【題目】2019625日,《固體廢物污染環(huán)境防治法(修訂草案)》初次提請全國人大常委會審議,草案對“生活垃圾污染環(huán)境的防治”進(jìn)行了專章規(guī)定.草案提出,國家推行生活垃圾分類制度.為了了解人民群眾對垃圾分類的認(rèn)識,某市環(huán)保部門對該市市民進(jìn)行了一次垃圾分類網(wǎng)絡(luò)知識問卷調(diào)查,每一位市民僅有一次參加機(jī)會,通過隨機(jī)抽樣,得到參加問卷調(diào)查的1000人的得分(滿分:100分)數(shù)據(jù),統(tǒng)計結(jié)果如下表所示:

得分

頻數(shù)

25

150

200

250

225

100

50

1)由頻數(shù)分布表可以認(rèn)為,此次問卷調(diào)查的得分服從正態(tài)分布,近似為這1000人得分的平均值(同一組數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作為代表),請利用正態(tài)分布的知識求;

2)在(1)的條件下,市環(huán)保部門為此次參加問卷調(diào)查的市民制定如下獎勵方案:

①得分不低于的可以獲贈2次隨機(jī)話費(fèi),得分低于的可以獲贈1次隨機(jī)話費(fèi);

②每次獲贈的隨機(jī)話費(fèi)和對應(yīng)的概率為:

獲贈的隨機(jī)話費(fèi)(單位:元)

20

40

概率

現(xiàn)市民小王要參加此次問卷調(diào)查,記(單位:元)為該市民參加問卷調(diào)查獲贈的話費(fèi),求的分布列及數(shù)學(xué)期望.

附:①;

②若,則,.

【答案】(1)0.8186;

(2)分布列見解析,.

【解析】

1)先求出,再根據(jù)正態(tài)分布的知識求出即可;(2)先求出的所有可能情況20,40,60,80元,再求的分布列及數(shù)學(xué)期望即可.

1)根據(jù)題中所給的統(tǒng)計表,結(jié)合題中所給的條件,可以求得

.

,,

所以.

2)根據(jù)題意,可以得出所得話費(fèi)的可能值有20,40,6080元,

20元的情況為低于平均值,概率,

40元的情況有一次機(jī)會獲40元,2次機(jī)會220元,概率

60元的情況為兩次機(jī)會,一次40元一次20元,概率,

80元的其概況為兩次機(jī)會,都是40元,概率為.

所以變量的分布列為:

20

40

60

80

所以其期望為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,直線,圓,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.

(1)求的極坐標(biāo)方程;

(2)若直線的極坐標(biāo)方程為,設(shè)的交點(diǎn)為A,B,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知偶函數(shù)滿足,當(dāng)時,,關(guān)于的不等式上有且只有200個整數(shù)解,則實數(shù)的取值范圍為( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ln(a x)+bx在點(diǎn)(1,f(1))處的切線是y=0;

(I)求函數(shù)f(x)的極值;

(II)當(dāng)恒成立時,求實數(shù)m的取值范圍(e為自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列都是由實數(shù)組成的無窮數(shù)列.

(1)若都是等差數(shù)列,判斷數(shù)列是否是等差數(shù)列,說明理由;

(2)若,且是等比數(shù)列,求的所有可能值;

(3)若都是等差數(shù)列,數(shù)列滿足,求證: 是等差數(shù)列的充要條件是: 中至少有一個是常數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)討論的單調(diào)性;

(2)當(dāng)時,,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量,若的夾角為,則直線與圓的位置關(guān)系是(

A.相交但不過圓心B.相交且過圓心C.相切D.相離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為為橢圓上一動點(diǎn),當(dāng)的面積最大時,其內(nèi)切圓半徑為,設(shè)過點(diǎn)的直線被橢圓截得線段,

當(dāng)軸時,.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若點(diǎn)為橢圓的左頂點(diǎn),是橢圓上異于左、右頂點(diǎn)的兩點(diǎn),設(shè)直線的斜率分別為,若,試問直線是否過定點(diǎn)?若過定點(diǎn),求該定點(diǎn)的坐標(biāo);若不過定點(diǎn),請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知美國蘋果公司生產(chǎn)某款iphone手機(jī)的年固定成本為40萬美元,每生產(chǎn)1萬部還需要另外投入16美元,設(shè)蘋果公司一年內(nèi)共生產(chǎn)該款iphone手機(jī)萬部并全部銷售完,每萬部的銷售收入為萬元,且.

(1)寫出年利潤(萬元)關(guān)于年產(chǎn)量(萬部)的函數(shù)解析式;

(2)當(dāng)年產(chǎn)量為多少萬部時,蘋果公司在該款手機(jī)的生產(chǎn)中所獲得的利潤最大?并求出最大利潤.

查看答案和解析>>

同步練習(xí)冊答案