【題目】已知函數(shù)的圖象與直線相切,是的導函數(shù),且.
(1)求;
(2)函數(shù)的圖象與曲線關于軸對稱,若直線與函數(shù)的圖象有兩個不同的交點,求證:.
【答案】(1)(2)證明見解析
【解析】
(1)設直線與函數(shù)的圖象相切的切點為,求得的導數(shù)可得切線的斜率,由切線方程和已知條件,可得方程組與可解得,進而得到所求的解析式;
(2)求得的解析式,,,兩式相加和相減,相除可得,令,可得要證,即證,即證,可令求得二階導數(shù),判斷單調(diào)性,即可得證.
假設直線與函數(shù)圖象的切點為,
因為,
則由題意知,
即
所以,即①,
又,所以②
由①②可得,所以
(2)由題可知,
則,即,
兩式相加得,
兩式相減得,
以上兩式相除得,
即,
不妨設,
要證,即證,
即,
即證,
令,
那么,則,
所以在上遞增,又,
所以當時,恒成立,
所以在上遞增,且.
所以,
從而成立.
科目:高中數(shù)學 來源: 題型:
【題目】我國古代數(shù)學名著《九章算術商功》中闡述:“斜解立方,得兩塹堵.斜解塹堵,其一為陽馬,一為鱉臑.陽馬居二,鱉臑居一,不易之率也.合兩鱉臑三而一,驗之以棊,其形露矣.”若稱為“陽馬”的某幾何體的三視圖如圖所示,圖中網(wǎng)格紙上小正方形的邊長為1,對該幾何體有如下描述:
①四個側面都是直角三角形;
②最長的側棱長為;
③四個側面中有三個側面是全等的直角三角形;
④外接球的表面積為24π.
其中正確的描述為____.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知是圓的直徑,,在圓上且分別在的兩側,其中,.現(xiàn)將其沿折起使得二面角為直二面角,則下列說法不正確的是( )
A.,,,在同一個球面上
B.當時,三棱錐的體積為
C.與是異面直線且不垂直
D.存在一個位置,使得平面平面
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知曲線的參數(shù)方程為,以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求曲線與曲線兩交點所在直線的極坐標方程;
(2)若直線的極坐標方程為,直線與軸的交點為,與曲線相交于兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知△ABC的內(nèi)角A,B,C的對邊分別為a,b,c.
(1)若的面積,求a+c值;
(2)若2cosC(+)=c2,求角C.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線: ()的焦點是橢圓: ()的右焦點,且兩曲線有公共點
(1)求橢圓的方程;
(2)橢圓的左、右頂點分別為, ,若過點且斜率不為零的直線與橢圓交于, 兩點,已知直線與相較于點,試判斷點是否在一定直線上?若在,請求出定直線的方程;若不在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左右焦點分別為,是橢圓短軸的一個頂點,并且是面積為的等腰直角三角形.
(1)求橢圓的方程;
(2)設直線與橢圓相交于兩點,過作與軸垂直的直線,已知點,問直線與的交點的橫坐標是否為定值?若是,則求出該定值;若不是,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com