已知函數(shù)y=f(x)是R上的偶函數(shù),對?x∈R都有f(x+4)=f(x)+f(2)成立.當x1,x2∈[0,2],且x1≠x2時,都有<0,給出下列命題:
①f(2)=0;
②直線x=-4是函數(shù)y=f(x)圖象的一條對稱軸;
③函數(shù)y=f(x)在[-4,4]上有四個零點;
④f(2 014)=0.
其中所有正確命題的序號為________.
①②④
【解析】令x=-2,得f(-2+4)=f(-2)+f(2),解得f(-2)=0,因為函數(shù)f(x)為偶函數(shù),所以f(2)=0,①正確;因為f(-4+x)=f(-4+x+4)=f(x),f(-4-x)=f(-4-x+4)=f(-x)=f(x),所以f(-4+x)=f(-4-x),即x=-4是函數(shù)f(x)的一條對稱軸,②正確;當x1,x2∈[0,2],且x1≠x2時,都有<0,說明函數(shù)f(x)在[0,2]上是單調(diào)遞減函數(shù),又f(2)=0,因此函數(shù)f(x)在[0,2]上只有一個零點,由偶函數(shù)知函數(shù)f(x)在[-2,0]上也只有一個零點,由f(x+4)=f(x),知函數(shù)的周期為4,所以有函數(shù)f(x)在(2,6]與[-6,-2]上也單調(diào)且有f(6)=f(-6)=0,因此,函數(shù)在[-4,4]上只有2個零點,③錯;對于④,因為函數(shù)的周期為4,即有f(2)=f(6)=f(10)=…=f(2 014)=0,④正確.
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練x4-1練習卷(解析版) 題型:填空題
如圖所示,直線PB與圓O相切于點B,D是弦AC上的點,∠PBA=∠DBA.若AD=m,AC=n,則AB=________.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練4練習卷(解析版) 題型:選擇題
已知函數(shù)f(x)=x3+ax2+x+2(a>0)的極大值點和極小值點都在區(qū)間(-1,1)內(nèi),則實數(shù)a的取值范圍是( ).
A.(0,2] B.(0,2) C.[,2) D.(,2)
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練2練習卷(解析版) 題型:解答題
設函數(shù)f(x)=ax2+bx+b-1(a≠0).
(1)當a=1,b=-2時,求函數(shù)f(x)的零點;
(2)若對任意b∈R,函數(shù)f(x)恒有兩個不同零點,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練2練習卷(解析版) 題型:選擇題
已知函數(shù)f(x)=則函數(shù)f(x)的零點為 ( ).
A. ,0 B.-2,0 C. D.0
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練1練習卷(解析版) 題型:選擇題
函數(shù)f(x)=log2|x|,g(x)=-x2+2,則f(x)·g(x)的圖象只可能是( ).
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習7-2隨機變量及其分布練習卷(解析版) 題型:填空題
將一枚均勻的硬幣拋擲6次,則正面出現(xiàn)的次數(shù)比反面出現(xiàn)的次數(shù)多的概率為________.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習6-1直線與圓練習卷(解析版) 題型:解答題
已知圓C:x2+y2+x-6y+m=0與直線l:x+2y-3=0.
(1)若直線l與圓C沒有公共點,求m的取值范圍;
(2)若直線l與圓C相交于P、Q兩點,O為原點,且OP⊥OQ,求實數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習4-1等差數(shù)列與等比數(shù)列練習卷(解析版) 題型:填空題
若干個能唯一確定一個數(shù)列的量稱為該數(shù)列的“基本量”.設{an}是公比為q的無窮等比數(shù)列,下列{an}的四組量中,一定能成為該數(shù)列“基本量”的是________.(寫出所有符合要求的組號)
①S1與S2;②a2與S3;③a1與an;④q與an.其中n為大于1的整數(shù),Sn為{an}的前n項和.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com