【題目】已知f(x)是定義在[-1,1]上的奇函數(shù),且f(1)=1,若a,b∈[-1,1],a+b≠0時(shí)
成立.
(Ⅰ)判斷f(x)在[-1,1]上的單調(diào)性,并證明;
(Ⅱ)解不等式:;
(Ⅲ)若f(x)≤m2-2am+1對(duì)所有的a∈[-1,1]恒成立,求實(shí)數(shù)m的取值范圍
【答案】(Ⅰ) 單調(diào)遞增(Ⅱ) (Ⅲ) m=0 或m≤-2或m≥2
【解析】
試題分析:(Ⅰ)任取x1,x2∈[-1,1],且x1<x2,利用函數(shù)的單調(diào)性的定義證明f(x)在[-1,1]上單調(diào)遞增;(Ⅱ)利用f(x)在[-1,1]上單調(diào)遞增,列出不等式組,即可求出不等式的解集;(Ⅲ)問(wèn)題轉(zhuǎn)化為m2-2am≥0,對(duì)a∈[-1,1]恒成立,通過(guò)①若m=0,②若m≠0,分類討論,判斷求解即可
試題解析:(Ⅰ)任取x1,x2∈[-1,1],且x1<x2,則-x2∈[-1,1],∵f(x)為奇函數(shù),
∴f(x1)-f(x2)=f(x1)+f(-x2)=·(x1-x2),2分
由已知得>0,x1-x2<0,∴f(x1)-f(x2)<0,即f(x1)<f(x2).
∴f(x)在[-1,1]上單調(diào)遞增. 4分
(Ⅱ)∵f(x)在[-1,1]上單調(diào)遞增,∴6分
∴不等式的解集為. 7分
(Ⅲ)∵f(1)=1,f(x)在[-1,1]上單調(diào)遞增.∴在[-1,1]上,f(x)≤1.
問(wèn)題轉(zhuǎn)化為m2-2am+1≥1,即m2-2am≥0,對(duì)a∈[-1,1]恒成立. 9分
下面來(lái)求m的取值范圍.設(shè)g(a)=-2m·a+m2≥0.
①若m=0,則g(a)=0≥0,對(duì)a∈[-1,1]恒成立.
②若m≠0,則g(a)為a的一次函數(shù),若g(a)≥0,對(duì)a∈[-1,1]恒成立,
必須g(-1)≥0且g(1)≥0,∴m≤-2或m≥2.
綜上,m=0 或m≤-2或m≥2 12
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】方程2x2+2y2-4x+8y+10=0表示的圖形是( )
A. 一個(gè)點(diǎn) B. 一個(gè)圓
C. 一條直線 D. 不存在
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為.
(1)求曲線的直角坐標(biāo)方程并指出其形狀;
(2)設(shè)是曲線上的動(dòng)點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間和極值;
(Ⅱ)當(dāng)時(shí),若函數(shù)在區(qū)間上存在唯一零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)盒子中裝有紅、黃、藍(lán)三種顏色的球各5個(gè),從中任取3個(gè)球.事件甲:3個(gè)球都不是紅球;事件乙:3個(gè)球不都是紅球;事件丙:3個(gè)球都是紅球;事件。3個(gè)球中至少有1個(gè)紅球,則下列選項(xiàng)中兩個(gè)事件互斥而不對(duì)立的是( )
A. 甲和乙 B. 甲和丙 C. 乙和丙 D. 乙和丁
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知m和n是兩條不同的直線,α和β是兩個(gè)不重合的平面,那么下面給出的條件中一定能推出m⊥β的是( ).
A. α⊥β,且mα B. m∥n,且n⊥β
C. α⊥β,且m∥α D. m⊥n,且n∥β
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有20位同學(xué),編號(hào)從1至20,現(xiàn)在從中抽取4人作問(wèn)卷調(diào)查,用系統(tǒng)抽樣方法確定所抽的編號(hào)為( )
A. 5,10,15,20 B. 2,6,10,14 C. 2,4,6,8 D. 5,8,11,14
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com