【題目】已知橢圓的離心率為,分別為的上、下頂點(diǎn)且外的動(dòng)點(diǎn),且上點(diǎn)的最近距離為1

1)求橢圓的標(biāo)準(zhǔn)方程;

2)當(dāng)時(shí),設(shè)直線分別與橢圓交于兩點(diǎn),若的面積是的面積的倍,求的最大值.

【答案】12

【解析】

試題(1)求橢圓標(biāo)準(zhǔn)方程,關(guān)鍵是列出兩個(gè)獨(dú)立條件,解對(duì)應(yīng)方程組即可,本題關(guān)鍵是轉(zhuǎn)化條件:上點(diǎn)的最近距離為,再結(jié)合離心率可得2)求最值問(wèn)題,首先將研究對(duì)象轉(zhuǎn)化為一元函數(shù):,再將直線方程與橢圓方程聯(lián)立,解出對(duì)應(yīng)點(diǎn)坐標(biāo),,,代入化簡(jiǎn)得,最后根據(jù)導(dǎo)數(shù)或基本不等式求最值

試題解析:(1)由于到橢圓上點(diǎn)的最近距離,,

,解得

所以橢圓方程為

2)解法一:,

直線方程為:,聯(lián)立,得,

所以的距離

,

直線方程為:,聯(lián)立,得,

所以,所以,

所以

所以,

,則,

當(dāng)且僅當(dāng),即時(shí),取,所以的最大值為

解法二:直線方程為,聯(lián)立,得,

直線方程為:,聯(lián)立,得,

,

,則,

當(dāng)且僅當(dāng),即時(shí),取,

所以的最大值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班級(jí)體育課進(jìn)行一次籃球定點(diǎn)投籃測(cè)試,規(guī)定每人最多投3次,每次投籃的結(jié)果相互獨(dú)立.處每投進(jìn)一球得3分,在處每投進(jìn)一球得2分,否則得0.將學(xué)生得分逐次累加并用表示,如果的值不低于3分就判定為通過(guò)測(cè)試,立即停止投籃,否則應(yīng)繼續(xù)投籃,直到投完三次為止.現(xiàn)有兩種投籃方案:方案1:先在處投一球,以后都在處投;方案2:都在處投籃.已知甲同學(xué)在處投籃的命中率為,在處投籃的命中率為.

1)若甲同學(xué)選擇方案1,求他測(cè)試結(jié)束后所得總分的分布列和數(shù)學(xué)期望;

2)你認(rèn)為甲同學(xué)選擇哪種方案通過(guò)測(cè)試的可能性更大?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABED中,AB//DE,ABBE,點(diǎn)C在AB上,且ABCD,AC=BC=CD=2,現(xiàn)將△ACD沿CD折起,使點(diǎn)A到達(dá)點(diǎn)P的位置,且PE.

(1)求證:平面PBC 平面DEBC;

(2)求三棱錐P-EBC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司計(jì)劃購(gòu)買(mǎi)2臺(tái)機(jī)器,該種機(jī)器使用三年后即被淘汰.機(jī)器有一易損零件,在購(gòu)進(jìn)機(jī)器時(shí),可以額外購(gòu)買(mǎi)這種零件作為備件,每個(gè)200.在機(jī)器使用期間,如果備件不足再購(gòu)買(mǎi),則每個(gè)500.現(xiàn)需決策在購(gòu)買(mǎi)機(jī)器時(shí)應(yīng)同時(shí)購(gòu)買(mǎi)幾個(gè)易損零件,為此搜集并整理了100臺(tái)這種機(jī)器在三年使用期內(nèi)更換的易損零件數(shù),得下面柱狀圖:

以這100臺(tái)機(jī)器更換的易損零件數(shù)的頻率代替1臺(tái)機(jī)器更換的易損零件數(shù)發(fā)生的概率,記表示2臺(tái)機(jī)器三年內(nèi)共需更換的易損零件數(shù),表示購(gòu)買(mǎi)2臺(tái)機(jī)器的同時(shí)購(gòu)買(mǎi)的易損零件數(shù).

)求的分布列;

)若要求,確定的最小值;

)以購(gòu)買(mǎi)易損零件所需費(fèi)用的期望值為決策依據(jù),在之中選其一,應(yīng)選用哪個(gè)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)a,.

1)若,且內(nèi)有且只有一個(gè)零點(diǎn),求a的值;

2)若,且有三個(gè)不同零點(diǎn),問(wèn)是否存在實(shí)數(shù)a使得這三個(gè)零點(diǎn)成等差數(shù)列?若存在,求出a的值,若不存在,請(qǐng)說(shuō)明理由;

3)若,,試討論是否存在,使得.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,過(guò)點(diǎn)作傾斜角為的直線,以原點(diǎn)為極點(diǎn),軸非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,將曲線上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍,縱坐標(biāo)不變,得到曲線,直線與曲線交于不同的兩點(diǎn).

1)求直線的參數(shù)方程和曲線的普通方程;

2)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐中,平面平面,底面為矩形,,,,、分別為線段上一點(diǎn),且.

(1)證明:;

(2)證明:平面,并求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在梯形ABCD中,AB//CD,AB=3,CD=6,過(guò)A,B分別作CD的垂線,垂足分別為E,F,已知DE=1,AE=3,將梯形ABCD沿AE,BF同側(cè)折起,使得平面ADE⊥平面ABFE,平面ADE∥平面BCF,得到圖2.

1)證明:BE//平面ACD;

2)求三棱錐CAED的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,底面是等腰梯形,,點(diǎn)的中點(diǎn),以為邊作正方形,且平面平面.

1)證明:平面平面.

2)求二面角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案