【題目】已知集合是滿足下列性質(zhì)的函數(shù)的全體:在定義域內(nèi)存在實(shí)數(shù),使得.
(1)判斷函數(shù)(為常數(shù))是否屬于集合;
(2)若屬于集合,求實(shí)數(shù)的取值范圍;
(3)若,求證:對(duì)任意實(shí)數(shù),都有屬于集合.
【答案】(1)屬于;(2);(3)證明見解析
【解析】
(1)利用時(shí),方程,此方程恒成立,說明函數(shù)(為常數(shù))屬于集合;
(2)由屬于集合,推出有實(shí)數(shù)解,即方程有實(shí)數(shù)解,分和兩種情況,得到結(jié)果;
(3)當(dāng)時(shí),方程有解,令,則在上的圖象是連續(xù)的,當(dāng)時(shí),當(dāng)時(shí),判定函數(shù)是否有零點(diǎn),證明對(duì)任意實(shí)數(shù),都有屬于集合.
(1)當(dāng)時(shí),方程,
此方程恒成立,
所以函數(shù)(為常數(shù))屬于集合;
(2)由屬于集合,
可得方程有實(shí)數(shù)解,
即,整理得方程有實(shí)數(shù)解,
當(dāng)時(shí),方程有實(shí)根,
當(dāng)時(shí),有,
解得或,
綜上,實(shí)數(shù)的取值范圍為;
(3)當(dāng)時(shí),方程有解,
等價(jià)于有解,
整理得有解,
令,則在上的圖象是連續(xù)的,
當(dāng)時(shí),,
故在上有一個(gè)零點(diǎn),
當(dāng)時(shí),,
故在上至少有一個(gè)零點(diǎn),
故對(duì)任意的實(shí)數(shù),在上都有零點(diǎn),即方程總有解,
所以對(duì)任意實(shí)數(shù),都有屬于集合.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知斜率為1的直線與橢圓交于,兩點(diǎn),且線段的中點(diǎn)為,橢圓的上頂點(diǎn)為.
(1)求橢圓的離心率;
(2)設(shè)直線與橢圓交于兩點(diǎn),若直線與的斜率之和為2,證明:過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求的單調(diào)區(qū)間;
(2)若函數(shù)在上無(wú)零點(diǎn),求最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y2=2px的焦點(diǎn)為F,準(zhǔn)線方程是x=﹣1.
(I)求此拋物線的方程;
(Ⅱ)設(shè)點(diǎn)M在此拋物線上,且|MF|=3,若O為坐標(biāo)原點(diǎn),求△OFM的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年春節(jié)期間,某超市準(zhǔn)備舉辦一次有獎(jiǎng)促銷活動(dòng),若顧客一次消費(fèi)達(dá)到400元?jiǎng)t可參加一次抽獎(jiǎng)活動(dòng),超市設(shè)計(jì)了兩種抽獎(jiǎng)方案.
方案一:一個(gè)不透明的盒子中裝有30個(gè)質(zhì)地均勻且大小相同的小球,其中10個(gè)紅球,20個(gè)白球,攪拌均勻后,顧客從中隨機(jī)抽取一個(gè)球,若抽到紅球則顧客獲得60元的返金券,若抽到白球則獲得20元的返金券,且顧客有放回地抽取3次.
方案二:一個(gè)不透明的盒子中裝有30個(gè)質(zhì)地均勻且大小相同的小球,其中10個(gè)紅球,20個(gè)白球,攪拌均勻后,顧客從中隨機(jī)抽取一個(gè)球,若抽到紅球則顧客獲得80元的返金券,若抽到白球則未中獎(jiǎng),且顧客有放回地抽取3次.
(1)現(xiàn)有兩位顧客均獲得抽獎(jiǎng)機(jī)會(huì),且都按方案一抽獎(jiǎng),試求這兩位顧客均獲得180元返金券的概率;
(2)若某顧客獲得抽獎(jiǎng)機(jī)會(huì).
①試分別計(jì)算他選擇兩種抽獎(jiǎng)方案最終獲得返金券的數(shù)學(xué)期望;
②為了吸引顧客消費(fèi),讓顧客獲得更多金額的返金券,該超市應(yīng)選擇哪一種抽獎(jiǎng)方案進(jìn)行促銷活動(dòng)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題正確的選項(xiàng)為( )
①平面外一條直線與平面內(nèi)的一條直線平行,則該直線與此平面平行;
②一個(gè)平面內(nèi)的一條直線與另一個(gè)平面平行,則這兩個(gè)平面平行;
③一條直線與一個(gè)平面內(nèi)的兩條直線垂直,則該直線與此平面垂直;
④一個(gè)平面過另一個(gè)平面的垂線,則這兩個(gè)平面垂直.
A.①②B.②③C.①④D.③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校藝術(shù)節(jié)對(duì)四件參賽作品只評(píng)一件一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲,乙,丙,丁四位同學(xué)對(duì)這四件參賽作品預(yù)測(cè)如下:
甲說:“是或作品獲得一等獎(jiǎng)”; 乙說:“ 作品獲得一等獎(jiǎng)”;
丙說:“ 兩件作品未獲得一等獎(jiǎng)”; 丁說:“是作品獲得一等獎(jiǎng)”.
評(píng)獎(jiǎng)揭曉后,發(fā)現(xiàn)這四位同學(xué)中只有兩位說的話是對(duì)的,則獲得一等獎(jiǎng)的作品是_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)為正整數(shù),記平面點(diǎn)集.問:平面內(nèi)最少要有多少條直線,它們的并集才能包含,但不含點(diǎn)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,圓與軸正、負(fù)半軸分別交于點(diǎn).橢圓以為短軸,且離心率為.
(1)求的方程;
(2)過點(diǎn)的直線分別與圓,曲線交于點(diǎn)(異于點(diǎn)).直線分別與軸交于點(diǎn).若,求的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com