【題目】已知定義在R上函數(shù)f(x)是可導(dǎo)的,f(1)=2,且f(x)+f'(x)<1,則不等式f(x)﹣1<e1﹣x的解集是( )(注:e為自然對(duì)數(shù)的底數(shù))
A.(1,+∞)
B.(﹣∞,0)∪(0,1)
C.(0,1)
D.(﹣∞,1)
【答案】A
【解析】解:根據(jù)題意,設(shè)F(x)=ex(f(x)﹣1),則F'(x)=ex[f(x)+f'(x)﹣1],
因?yàn)閑x>0,由已知可得,F(xiàn)'(x)<0,即函數(shù)F'(x)是單調(diào)減函數(shù),F(xiàn)(1)=e,
故f(x)﹣1<e1﹣x,即F(x)<F(1),
則有x>1;
即不等式f(x)﹣1<e1﹣x的解集是(1,+∞);
故選:A.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的相關(guān)知識(shí),掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= ,
(1)若m=2,求f(x)的最小值;
(2)若f(x)恰有2個(gè)零點(diǎn),求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】判斷“函數(shù) 有三個(gè)零點(diǎn)”是否為命題.若是命題,是真命題還是假命題?說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】求適合下列條件的橢圓的標(biāo)準(zhǔn)方程:
(1)長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的 倍,且過(guò)點(diǎn) ;
(2)橢圓過(guò)點(diǎn) ,離心率 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,a,b,c分別為A、B、C的對(duì)邊,且滿足2(a2﹣b2)=2accosB+bc
(1)求A
(2)D為邊BC上一點(diǎn),CD=3BD,∠DAC=90°,求tanB.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某班學(xué)生喜愛(ài)打籃球是否與性別有關(guān),對(duì)本班50人進(jìn)行了問(wèn)卷調(diào)查得到了如下的列表:
喜愛(ài)打籃球 | 不喜愛(ài)打籃球 | 合計(jì) | |
男生 | 20 | 5 | 25 |
女生 | 10 | 15 | 25 |
合計(jì) | 30 | 20 | 50 |
(1)用分層抽樣的方法在喜歡打藍(lán)球的學(xué)生中抽6人,其中男生抽多少人?
(2)在上述抽取的6人中選2人,求恰有一名女生的概率.
(3)為了研究喜歡打藍(lán)球是否與性別有關(guān),計(jì)算出K2 , 你有多大的把握認(rèn)為是否喜歡打藍(lán)球與性別有關(guān)? 附:
下面的臨界值表供參考:
p(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列函數(shù)中,滿足“f(x+y)=f(x)f(y)”的單調(diào)遞增函數(shù)是( )
A.f(x)=x3
B.f(x)=x
C.f(x)=3x
D.f(x)=( )x
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C:x2+y2+2x-4y+3=0.
(1)若圓C的切線在x軸和y軸上的截距相等,求此切線的方程.
①當(dāng)切線在兩坐標(biāo)軸上的截距為零時(shí),設(shè)切線方程為y=kx,
則 ,解得k=2± ,
從而切線方程為y=(2± )x.
②當(dāng)切線在兩坐標(biāo)軸上的截距不為零時(shí),設(shè)切線方程為x+y-a=0,則 ,解得a=-1或3,
從而切線方程為x+y+1=0或x+y-3=0.
綜上,切線方程為(2+ )x-y=0或(2- )x-y=0或x+y+1=0或x+y-3=0
(2)點(diǎn)P在直線l:2x-4y+3=0上,過(guò)點(diǎn)P作圓C的切線,切點(diǎn)記為M,求使|PM|最小的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,一個(gè)圓錐形的空杯子上放著一個(gè)直徑為8cm的半球形的冰淇淋,請(qǐng)你設(shè)計(jì)一種這樣的圓錐形杯子(杯口直徑等于半球形的冰淇淋的直徑,杯子壁厚忽略不計(jì)),使冰淇淋融化后不會(huì)溢出杯子,怎樣設(shè)計(jì)最省材料?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com