【題目】已知指數(shù)函數(shù)yg(x)滿足:g(3)=8,定義域為R的函數(shù)f(x)=是奇函數(shù).

(1)確定yf(x)yg(x)的解析式;

(2)判斷函數(shù)f(x)的單調性,并用定義證明;

(3)若對于任意x∈[-5,-1],都有f(1-x)+f(1-2x)>0成立,求x的取值范圍.

【答案】(1)f(x)=g(x)=2x;(2)見解析;(3)[2,3].

【解析】

(1)由題意可設,代入條件可得函數(shù)解析式,從而得f(x);

(2)任取x1,x2Rx1<x2,化簡f(x1)f(x2)0比較大小即可得單調性;

(3)由函數(shù)為奇函數(shù)可得f(1x)>f(2x1),,結合單調性和定義域可得,從而得解.

(1),

g(3)=a3=8,∴a=2,∴g(x)=2x,

f(x)=,

f(x)是奇函數(shù),f(-1)+f(1)=0,,解得m=2.

經檢驗,當m=2時,f(x)=為奇函數(shù),

f(x)=;

(2)任取x1,x2R,x1<x2,

f(x1)-f(x2)=.

x1<x2,

∴2x2-2x1>0,

∵1+2x1>0,1+2x2>0,

f(x1)-f(x2)>0,

f(x1)>f(x2),

f(x)是定義在R上的減函數(shù);

(3)∵f(1-x)+f(1-2x)>0,且f(x)為奇函數(shù),

f(1-x)>f(2x-1),

,

解得2≤x≤3,

x的取值范圍是[2,3].

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=
(1)求函數(shù)f(x)的定義域A;
(2)設B={x|﹣1<x<2},當實數(shù)a、b∈(B∩RA)時,證明: |.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設F1,F(xiàn)2分別是橢圓C: (a>b>0)的左,右焦點,M是C上一點且MF2與x軸垂直,直線MF1與C的另一個交點為N.

(1)若直線MN的斜率為,求C的離心率;

(2)若直線MN在y軸上的截距為2,且|MN|=5|F1N|,求a,b.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xoy中,曲線C1 (t為參數(shù),t≠0),其中0≤α<π,在以O為極點,x軸正半軸為極軸的極坐標系中,曲線C2:ρ=2sinθ,曲線C3:ρ=2 cosθ.
(1)求C2與C3交點的直角坐標;
(2)若C2與C1相交于點A,C3與C1相交于點B,求|AB|的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐P﹣ABCD中,底面ABCD是一直角梯形,BA⊥AD,AD∥BC,AB=BC=2,PA=3,PA⊥底面ABCD,E是棱PD上異于P,D的動點.設 =m,則“0<m<2”是三棱錐C﹣ABE的體積不小于1的(

A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,內角A,B,C的對邊分別是a,b,c,已知c=6,sinA﹣sinC=sin(A﹣B).若1≤a≤6,則sinC的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】是定義在上的奇函數(shù),且對任意,當時,都有

(1),試比較的大小關系;

(2)對任意恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)g(x)=ax2-2ax+1+b(a>0)在區(qū)間[2,4]上的最大值為9,最小值為1,記f(x)=g(|x|)。

(1)求實數(shù)a,b的值;

(2)若不等式f(2k)>1成立,求實數(shù)k的取值范圍;

(3)定義在[p,q]上的函數(shù)(x),設p=x0<x1<…<xi-1<xi<…<xn=q,x1,x2,…,xn-l將區(qū)間[p,q]任意劃分成n個小區(qū)間,如果存在一個常數(shù)M>0,使得和式恒成立,則稱函數(shù)(x)為在[p,q]上的有界變差函數(shù)。試判斷函數(shù)f(x)是否為在[0,4]上的有界變差函數(shù)?若是,求M的最小值;若不是,請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設全集U=R,集合A={x|7﹣6x≤0},集合B={x|y=lg(x+2)},則(UA)∩B等于(
A.(﹣2,
B.( ,+∞)
C.[﹣2,
D.(﹣2,﹣

查看答案和解析>>

同步練習冊答案