【題目】如圖是函數(shù)的導函數(shù)的圖象,給出下列命題:
①-2是函數(shù)的極值點;
②1是函數(shù)的極值點;
③的圖象在處切線的斜率小于零;
④函數(shù)在區(qū)間上單調(diào)遞增.
則正確命題的序號是( )
A. ①③ B. ②④ C. ②③ D. ①④
【答案】D
【解析】
根據(jù)導函數(shù)圖象可判定導函數(shù)的符號,從而確定函數(shù)的單調(diào)性,得到極值點,以及根據(jù)導數(shù)的幾何意義可知在某點處的導數(shù)即為在該點處的切線斜率.
根據(jù)導函數(shù)圖象可知當時,,在時,則函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,
故在區(qū)間上上單調(diào)遞增正確,即④正確
而在處左側(cè)單調(diào)遞減,右側(cè)單調(diào)遞增,則-2是函數(shù)的極小值點,故①正確
∵函數(shù)在上單調(diào)遞減,在上單調(diào)遞增
∴在處左側(cè)導函數(shù)與右側(cè)導函數(shù)同號,故1不是函數(shù)的極值點,故②不正確;
∵函數(shù)在x=0處的導數(shù)大于0
∴的圖象在處切線的斜率大于零,故③不正確
故正確的為:①④
故選D.
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知傾斜角為的直線經(jīng)過點.以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為
(1)寫出曲線的普通方程;
(2)若直線與曲線有兩個不同的交點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,函數(shù)(是自然對數(shù)的底數(shù)).
(1)若有最小值,求的取值范圍,并求出的最小值;
(2)若對任意實數(shù),不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地隨著經(jīng)濟的發(fā)展,居民收入逐年增長,下表是該地一建設(shè)銀行連續(xù)五年的儲蓄存款(年底余額),如下表1:
年份x | 2011 | 2012 | 2013 | 2014 | 2015 |
儲蓄存款y (千億元) | 5 | 6 | 7 | 8 | 10 |
為了研究計算的方便,工作人員將上表的數(shù)據(jù)進行了處理,得到下表2:
時間代號t | 1 | 2 | 3 | 4 | 5 |
z | 0 | 1 | 2 | 3 | 5 |
(1)求z關(guān)于t的線性回歸方程;
(2)通過(1)中的方程,求出y關(guān)于x的回歸方程;
(3)用所求回歸方程預測到2020年年底,該地儲蓄存款額可達多少?
(附:對于線性回歸方程,其中)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,點列{An}、{Bn}分別在銳角兩邊(不在銳角頂點),且|AnAn+1|=|An+1An+2|,An≠An+2 , |BnBn+1|=|Bn+1Bn+2|,Bn≠Bn+1 , n∈N*(P≠Q(mào)表示點P與Q不重合),若dn=|AnBn|,Sn為△AnBnBn+1的面積,則( )
A.{dn}是等差數(shù)列
B.{Sn}是等差數(shù)列
C.{d }是等差數(shù)列
D.{S }是等差數(shù)列
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】數(shù)列{an}的前n項和記為Sn且滿足Sn=2an﹣1,n∈N*;
(1)求數(shù)列{an}的通項公式;
(2)設(shè)Tn=a1a2﹣a2a3+a3a4﹣a4a5+…+(﹣1)n+1anan+1 , 求{Tn}的通項公式;
(3)設(shè)有m項的數(shù)列{bn}是連續(xù)的正整數(shù)數(shù)列,并且滿足:lg2+lg(1+ )+lg(1+ )+…+lg(1+ )=lg(log2am).
問數(shù)列{bn}最多有幾項?并求出這些項的和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知a>0,且a≠1,則雙曲線C1: ﹣y2=1與雙曲線C2: ﹣x2=1的( )
A.焦點相同
B.頂點相同
C.漸近線相同
D.離心率相等
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓右焦點,離心率為,過作兩條互相垂直的弦,設(shè)中點分別為.
(1)求橢圓的方程;
(2) 證明:直線必過定點,并求出此定點坐標;
(3) 若弦的斜率均存在,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四邊形中,,,,將四邊形沿對角線折成四面.使平面平面,則下列結(jié)論正確的是( ).
A. B.
C. 與平面所成的角為 D. 四面體的體積為
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com