【題目】有20名學生參加某次考試,成績(單位:分)的頻率分布直方圖如圖所示:
(Ⅰ)求頻率分布直方圖中的值;
(Ⅱ)分別求出成績落在中的學生人數(shù);
(Ⅲ)從成績在的學生中任選2人,求所選學生的成績都落在中的概率
【答案】(Ⅰ)(Ⅱ)6,4,2(Ⅲ)
【解析】試題分析:(Ⅰ)由題意,
(Ⅱ)成績落在中的學生人數(shù)為,
成績落在中的學生人數(shù)
成績落在中的學生人數(shù).
(Ⅲ)設(shè)落在中的學生為,落在中的學生為,
寫出所有事件,則可知基本事件個數(shù)為, 而設(shè)A=“此2人的成績都在”,則事件A包含的基本事件數(shù),所以事件A發(fā)生概率
試題解析:(Ⅰ)由題意, .
(Ⅱ)成績落在中的學生人數(shù)為,
成績落在中的學生人數(shù)
成績落在中的學生人數(shù). …
(Ⅲ)設(shè)落在中的學生為,落在中的學生為,
則,
基本事件個數(shù)為設(shè)A=“此2人的成績都在”,則事件A包含的基本事件數(shù),
所以事件A發(fā)生概率
科目:高中數(shù)學 來源: 題型:
【題目】某品牌茶壺的原售價為80元一個,今有甲、乙兩家茶具店銷售這種茶壺,甲店用如下的方法促銷:如果只購買一只茶壺,其價格為78元/個;如果一次購買兩個茶壺,其價格為76元/個;…;如果一次購買的茶壺數(shù)每增加一個,那么茶壺的價格減少2元/個,但茶壺的售價不得低于44元/個。乙店一律按原價的75%銷售,F(xiàn)某茶社要購買這種茶壺個,如果全部在甲店購買,則所需金額為元;如果全部在乙店購買,則所需金額為元。
(1)分別求出、與之間的函數(shù)關(guān)系式。
(2)該茶社去哪家茶具店購買茶壺花費較少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙、丙三人參加微信群搶紅包游戲,規(guī)則如下:每輪游戲發(fā)個紅包,每個紅包金額為元,.已知在每輪游戲中所產(chǎn)生的個紅包金額的頻率分布直方圖如圖所示.
(1)求的值,并根據(jù)頻率分布直方圖,估計紅包金額的眾數(shù);
(2)以頻率分布直方圖中的頻率作為概率,若甲、乙、丙三人從中各搶到一個紅包,其中金額在的紅包個數(shù)為,求的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某班倡議假期每位學生至少閱讀一本名著,為了解學生的閱讀情況,對該班所有學生進行了調(diào)查.調(diào)查結(jié)果如下表:
閱讀名著的本數(shù) | 1 | 2 | 3 | 4 | 5 |
男生人數(shù) | 3 | 1 | 2 | 1 | 3 |
女生人數(shù) | 1 | 3 | 3 | 1 | 2 |
(1)試根據(jù)上述數(shù)據(jù),求這個班級女生閱讀名著的平均本數(shù);
(2)若從閱讀本名著的學生中任選人交流讀書心得,求選到男生和女生各人的概率;
(3)試比較該班男生閱讀名著本數(shù)的方差與女生閱讀名著本數(shù)的方差的大小(只需寫出結(jié)論).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某家具廠有方木料 ,五合板 ,準備加工成書桌和書櫥出售.已知生產(chǎn)每張書桌需要方木料 ,五合板 ,生產(chǎn)每個書櫥需要方木料 ,五合板 ,出售一張書桌可獲利潤 元,出售一個書櫥可獲利潤 元.
(1)如果只安排生產(chǎn)書桌,可獲利潤多少?
(2)如果只安排生產(chǎn)書櫥,可獲利潤多少?
(3)怎祥安排生產(chǎn)可使所得利潤最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)是定義在上的函數(shù),如果存在點,對函數(shù)的圖象上任意點,關(guān)于點的對稱點也在函數(shù)的圖象上,則稱函數(shù)關(guān)于點對稱,稱為函數(shù)的一個對稱點,對于定義在上的函數(shù),可以證明點是圖象的一個對稱點的充要條件是,.
(1)求函數(shù)圖象的一個對稱點;
(2)函數(shù)的圖象是否有對稱點?若存在則求之,否則說明理由;
(3)函數(shù)的圖象是否有對稱點?若存在則求之,否則說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于函數(shù),若在定義域內(nèi)存在實數(shù)滿足,則稱為“局部奇函數(shù)”.
為定義在上的“局部奇函數(shù)”;
方程有兩個不等實根;
若“”為假命題,“”為真命題,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com