【題目】已知數(shù)列,則“存在常數(shù),對(duì)任意的,且,都有”是“數(shù)列 為等差數(shù)列”的( )

A. 充分而不必要條件 B. 必要而不充分條件

C. 充分必要條件 D. 既不充分也不必要條件

【答案】C

【解析】

由等差數(shù)列的定義不妨令mn+1,則有:an+1anc,可知,數(shù)列{an}是以c為公差的等差數(shù)列,由等差數(shù)列的通項(xiàng)公式ana1+n1d,ama1+m1d,(d為公差)得:,故得解.

由已知:“存在常數(shù)c,對(duì)任意的m,nN*,且mn,都有

不妨令mn+1,則有:an+1anc,由等差數(shù)列的定義,

可知,數(shù)列{an}是以c為公差的等差數(shù)列,

由“數(shù)列{an}為等差數(shù)列”則ana1+n1d,ama1+m1d,(d為公差)

所以:,

即存在“存在常數(shù)c,對(duì)任意的m,nN*,且mn,都有”此時(shí),cd

綜合①②得:“存在常數(shù)c,對(duì)任意的m,nN*,且mn,都有

是“數(shù)列{an}為等差數(shù)列”的充分必要條件,

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】北京市政府為做好會(huì)議接待服務(wù)工作,對(duì)可能遭受污染的某海產(chǎn)品在進(jìn)入餐飲區(qū)前必須進(jìn)行兩輪檢測(cè),只有兩輪都合格才能進(jìn)行銷售,否則不能銷售.已知該海產(chǎn)品第一輪檢測(cè)不合格的概率為,第二輪檢測(cè)不合格的概率為,兩輪檢測(cè)是否合格相互沒(méi)有影響.

1)求該海產(chǎn)品不能銷售的概率.

2)如果該海產(chǎn)品可以銷售,則每件產(chǎn)品可獲利40元;如果該海產(chǎn)品不能銷售,則每件產(chǎn)品虧損80元(即獲利-80元).已知一箱中有該海產(chǎn)品4件,記一箱該海產(chǎn)品獲利元,求的分布列,并求出數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】三棱錐S-ABC中,SA⊥平面ABCABBC,SAAB=1,BC,則三棱錐外接球的表面積等于______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在等差數(shù)列中,已知公差, ,且 , 成等比數(shù)列.

(1)求數(shù)列的通項(xiàng)公式;

(2)求.

【答案】(1);(2)100

【解析】試題分析:(1)根據(jù)題意, 成等比數(shù)列得求出d即可得通項(xiàng)公式;(2)求項(xiàng)的絕對(duì)前n項(xiàng)和,首先分清數(shù)列有多少項(xiàng)正數(shù)項(xiàng)和負(fù)數(shù)項(xiàng),然后正數(shù)項(xiàng)絕對(duì)值數(shù)值不變,負(fù)數(shù)項(xiàng)絕對(duì)值要變號(hào),從而得,得,由,得,∴ 計(jì)算 即可得出結(jié)論

解析:(1)由題意可得,則, ,

,即,

化簡(jiǎn)得,解得(舍去).

.

(2)由(1)得時(shí),

,得,由,得

.

.

點(diǎn)睛:對(duì)于數(shù)列第一問(wèn)首先要熟悉等差和等比通項(xiàng)公式及其性質(zhì)即可輕松解決,對(duì)于第二問(wèn)前n項(xiàng)的絕對(duì)值的和問(wèn)題,首先要找到數(shù)列由多少正數(shù)項(xiàng)和負(fù)數(shù)項(xiàng),進(jìn)而找到絕對(duì)值所影響的項(xiàng),然后在求解即可得結(jié)論

型】解答
結(jié)束】
18

【題目】甲、乙兩家銷售公司擬各招聘一名產(chǎn)品推銷員,日工資方案如下: 甲公司規(guī)定底薪80元,每銷售一件產(chǎn)品提成1元; 乙公司規(guī)定底薪120元,日銷售量不超過(guò)45件沒(méi)有提成,超過(guò)45件的部分每件提成8元.

(I)請(qǐng)將兩家公司各一名推銷員的日工資 (單位: 元) 分別表示為日銷售件數(shù)的函數(shù)關(guān)系式;

(II)從兩家公司各隨機(jī)選取一名推銷員,對(duì)他們過(guò)去100天的銷售情況進(jìn)行統(tǒng)計(jì),得到如下條形圖。若記甲公司該推銷員的日工資為,乙公司該推銷員的日工資為 (單位: 元),將該頻率視為概率,請(qǐng)回答下面問(wèn)題:

某大學(xué)畢業(yè)生擬到兩家公司中的一家應(yīng)聘推銷員工作,如果僅從日均收入的角度考慮,請(qǐng)你利用所學(xué)的統(tǒng)計(jì)學(xué)知識(shí)為他作出選擇,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形和梯形所在的平面互相垂直,,,交于點(diǎn),分別為線段,的中點(diǎn)

(Ⅰ)求證:

)求證:平面

)若,求證:平面平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在首屆中國(guó)國(guó)際商品博覽會(huì)期間,甲、乙、丙三家供貨公司各簽訂了兩個(gè)供貨合同,已知這三家公司供貨合同中金額分別是300萬(wàn)元和600萬(wàn)元、300萬(wàn)元和900萬(wàn)元、600萬(wàn)元和900萬(wàn)元,甲看了乙的供貨合同說(shuō):我與乙的供貨合同中金額相同的合同不是600萬(wàn)元,乙看了丙的供貨合同說(shuō):我與丙的供貨合同中金額相同的合同不是300萬(wàn)元,丙說(shuō):我的兩個(gè)供貨合同中金額之和不是1500萬(wàn)元,則甲簽訂的兩個(gè)供貨合同中金額之和是(

A.900萬(wàn)B.1500萬(wàn)元C.不能確定D.1200萬(wàn)元

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中e為自然對(duì)數(shù)的底數(shù).

1)若=0,求函數(shù)的單調(diào)區(qū)間;

2)若,證明0時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中央政府為了應(yīng)對(duì)因人口老齡化而造成的勞動(dòng)力短缺等問(wèn)題,擬定出臺(tái)延遲退休年齡政策為了了解人們對(duì)延遲退休年齡政策的態(tài)度,責(zé)成人社部進(jìn)行調(diào)研.人社部從網(wǎng)上年齡在15-65歲的人群中隨機(jī)調(diào)查100人,調(diào)查數(shù)據(jù)的頻率分布直方圖和支持延遲退休的人數(shù)與年齡的統(tǒng)計(jì)結(jié)果如下:

年齡

支持延遲退休的人數(shù)

15

5

15

28

17

1)由以上統(tǒng)計(jì)數(shù)據(jù)填2×2列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過(guò)005的前提下認(rèn)為以45歲為分界點(diǎn)的不同人群對(duì)延遲退休年齡政策的支持度有差異;

45歲以下

45歲以上

總計(jì)

支持

不支持

總計(jì)

參考數(shù)據(jù):

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

,其中

2)若以45歲為分界點(diǎn),從不支持延遲退休的人中按分層抽樣的方法抽取8人參加某項(xiàng)活動(dòng)、現(xiàn)從這8人中隨機(jī)抽2人.記抽到45歲以上的人數(shù)為X,求隨機(jī)變量X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校實(shí)行自主招生,參加自主招生的學(xué)生從8個(gè)試題中隨機(jī)挑選出4個(gè)進(jìn)行作答,至少答對(duì)3個(gè)才能通過(guò)初試,已知甲、乙兩人參加初試,在這8個(gè)試題中甲能答對(duì)6個(gè),乙能答對(duì)每個(gè)試題的概率為,且甲、乙兩人是否答對(duì)每個(gè)試題互不影響.

1)試通過(guò)概率計(jì)算,分析甲、乙兩人誰(shuí)通過(guò)自主招生初試的可能性更大;

2)若答對(duì)一題得5分,答錯(cuò)或不答得0分,記乙答題的得分為,求的分布列.

查看答案和解析>>

同步練習(xí)冊(cè)答案