設(shè)函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間
(2)設(shè)函數(shù)=,求證:當(dāng)時(shí),有成立
(1) 當(dāng)時(shí),>0,所以為單調(diào)遞增區(qū)間 4分
當(dāng)時(shí),由>0得,即為其單調(diào)增區(qū)間,由<0得,即為其減區(qū)間
(2)構(gòu)造函數(shù)由函數(shù)==,借助于導(dǎo)數(shù)來(lái)判定單調(diào)性,進(jìn)而得到證明。
解析試題分析:(1)解:定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/d4/3/ss5ft.png" style="vertical-align:middle;" /> 1分
== 2分
當(dāng)時(shí),>0,所以為單調(diào)遞增區(qū)間 4分
當(dāng)時(shí),由>0得,即為其單調(diào)增區(qū)間
由<0得,即為其減區(qū)間 7分
(2)證明:由函數(shù)==得
= 9分
由(1)知,當(dāng)=1時(shí),
即不等式成立 11分
所以當(dāng)時(shí),=
=0
即在上單調(diào)遞減,
從而滿足題意 14分
考點(diǎn):導(dǎo)數(shù)的運(yùn)用
點(diǎn)評(píng):解決的關(guān)鍵是根據(jù)導(dǎo)數(shù)的符號(hào)判定單調(diào)性,以及函數(shù)的最值得到證明,屬于基礎(chǔ)題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(1)若,求曲線在點(diǎn)處的切線方程;
(2)若函數(shù)在其定義域內(nèi)為增函數(shù),求正實(shí)數(shù)的取值范圍;
(3)設(shè)函數(shù),若在上至少存在一點(diǎn),使得>成立,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
(Ⅰ)若,試確定函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若,且對(duì)于任意,恒成立,試確定實(shí)數(shù)的取值范圍;
(Ⅲ)設(shè)函數(shù),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),且。
(1)若函數(shù)在處的切線與軸垂直,求的極值。
(2)若函數(shù)在,求實(shí)數(shù)a的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),,其中R .
(1)討論的單調(diào)性;
(2)若在其定義域內(nèi)為增函數(shù),求正實(shí)數(shù)的取值范圍;
(3)設(shè)函數(shù), 當(dāng)時(shí),若存在,對(duì)于任意的,總有成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
文科設(shè)函數(shù)。(Ⅰ)若函數(shù)在處與直線相切,①求實(shí)數(shù),b的值;②求函數(shù)上的最大值;(Ⅱ)當(dāng)時(shí),若不等式對(duì)所有的都成立,求實(shí)數(shù)m的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),其中.
(I)若函數(shù)在區(qū)間(1,2)上不是單調(diào)函數(shù),試求的取值范圍;
(II)已知,如果存在,使得函數(shù)在處取得最小值,試求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分為12分)
已知函數(shù)的圖像過(guò)坐標(biāo)原點(diǎn),且在點(diǎn)處的切線的斜率是.
(1)求實(shí)數(shù)的值;
(2)求在區(qū)間上的最大值;
(3)對(duì)任意給定的正實(shí)數(shù),曲線上是否存在兩點(diǎn),使得是以為直角頂點(diǎn)的直角三角形,且此三角形斜邊的中點(diǎn)在軸上?請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com