【題目】已知點 為坐標原點, 是橢圓 上的兩個動點,滿足直線 與直線 關(guān)于直線 對稱.
(1)證明直線 的斜率為定值,并求出這個定值;
(2)求 的面積最大時直線 的方程.

【答案】
(1)證明:設(shè)直線 方程為: ,代入

設(shè) ,因為點 在橢圓上,所以

又由題知,直線 的斜率與 的斜率互為相反數(shù),在上式中以 ,可得
,
所以直線 的斜率
故答案為:直線 的斜率為定值,其值為
(2)解:由(1)可設(shè)直線 方程為: ,代入
,則 .由 可得 .
, 到直線 的距離
可得 ,
當(dāng)且僅當(dāng) (滿足 ),即 時取等.
故答案為:直線 的方程為: ,或 .
【解析】(1)將直線方程代入橢圓方程中消去y得關(guān)于x的一元二次方程,由韋達定理得到兩根和與積,由斜率公式求斜率;
(2)將三角形的面積表示為m的函數(shù)式,由二次函數(shù)求最值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某旅游愛好者計劃從3個亞洲國家 和3個歐洲國家 中選擇2個國家去旅游.
(Ⅰ)若從這6個國家中任選2個,求這2個國家都是亞洲國家的概率;
(Ⅱ)若從亞洲國家和歐洲國家中各任選1個,求這2個國家包括 但不包括 的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為調(diào)查高一、高二學(xué)生周日在家學(xué)習(xí)用時情況,隨機抽取了高一、高二各人,對他們的學(xué)習(xí)時間進行了統(tǒng)計,分別得到了高一學(xué)生學(xué)習(xí)時間(單位:小時)的頻數(shù)分布表和高二學(xué)生學(xué)習(xí)時間的頻率分布直方圖.

高一學(xué)生學(xué)習(xí)時間的頻數(shù)分布表(學(xué)習(xí)時間均在區(qū)間內(nèi)):

學(xué)習(xí)時間

頻數(shù)

3

1

8

4

2

2

高二學(xué)生學(xué)習(xí)時間的頻率分布直方圖:

(1)求高二學(xué)生學(xué)習(xí)時間的頻率分布直方圖中的,并根據(jù)此頻率分布直方圖估計該校高二學(xué)生學(xué)習(xí)時間的中位數(shù);

(2)利用分層抽樣的方法,從高一學(xué)生學(xué)習(xí)時間在,的兩組里隨機抽取再從這人中隨機抽取,求學(xué)習(xí)時間在這一組中至少有人被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=f(x),f(0)=-2,且對 ,y R,都有f(x+y)-f(y)=(x+2y+1)x.
(1)求f(x)的表達式;
(2)已知關(guān)于x的不等式f(x)-ax+a+1 的解集為A,若A[2,3],求實數(shù)a的取值范圍;
(3)已知數(shù)列{ }中, , ,記 ,且數(shù)列{ 的前n項和為 ,
求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動圓 過定點 ,且在定圓 的內(nèi)部與其相內(nèi)切.
(1)求動圓圓心 的軌跡方程
(2)直線 交于 兩點,與圓 交于 兩點,求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知以點為圓心的圓過點線段的垂直平分線交圓于點、,

(1)求直線的方程; (2)求圓的方程。

(3)設(shè)點在圓上,試探究使的面積為 8 的點共有幾個?證明你的結(jié)論

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項和為,點在直線上.?dāng)?shù)列滿足

,,且其前9項和為153.

)求數(shù)列,的通項公式;

)設(shè),數(shù)列的前項和為,求使不等式對一切都成立的最大正整數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求下列直線方程

(1)求過點且與圓相切的直線方程;

(2)一直線經(jīng)過點,被圓截得的弦長為8,求此弦所在直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在 中,角 的對邊分別是 ,且有 .
(1)求 ;
(2)若 ,求 面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案