【題目】若將函數(shù)y=2sin(3x+φ)的圖象向右平移 個(gè)單位后得到的圖象關(guān)于點(diǎn)( )對(duì)稱,則|φ|的最小值是( )
A.
B.
C.
D.
【答案】A
【解析】解:將函數(shù)y=2sin(3x+φ)的圖象向右平移 個(gè)單位后得到的函數(shù)解析式為y=2sin(3x﹣ +φ)
∵y=2sin(3x﹣ +φ)的圖象關(guān)于點(diǎn)( )對(duì)稱,
∴3× ﹣ +φ=kπ,(k∈Z)
∴φ=kπ﹣
∴|φ|的最小值是
故選A
【考點(diǎn)精析】本題主要考查了函數(shù)y=Asin(ωx+φ)的圖象變換的相關(guān)知識(shí)點(diǎn),需要掌握?qǐng)D象上所有點(diǎn)向左(右)平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)訄AM恒過點(diǎn)(0,1),且與直線y=﹣1相切.
(1)求圓心M的軌跡方程;
(2)動(dòng)直線l過點(diǎn)P(0,﹣2),且與點(diǎn)M的軌跡交于A、B兩點(diǎn),點(diǎn)C與點(diǎn)B關(guān)于y軸對(duì)稱,求證:直線AC恒過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為奇函數(shù), 為偶函數(shù),且.
(1)求及的解析式及定義域;
(2)若關(guān)于的不等式恒成立,求實(shí)數(shù)的取值范圍.
(3)如果函數(shù),若函數(shù)有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形是正方形, 平面, 分別為的中點(diǎn),且.
(1)求證:平面平面;
(2)求證:平面平面;
(3)求三棱錐與四棱錐的體積之比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域?yàn)镽的函數(shù)f(x)= 是奇函數(shù).
(Ⅰ)求a,b的值;
(Ⅱ)已知f(x)在定義域上為減函數(shù),若對(duì)任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0(k為常數(shù))恒成立.求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知{an}是等比數(shù)列,a1=2,且a1 , a3+1,a4成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=log2an , 求數(shù)列{bn}的前n項(xiàng)和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系 中,以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線 的極坐標(biāo)方程是 ,圓 的極坐標(biāo)方程是 .
(1)求 與 交點(diǎn)的極坐標(biāo);
(2)設(shè) 為 的圓心, 為 與 交點(diǎn)連線的中點(diǎn),已知直線 的參數(shù)方程是 ( 為參數(shù)),求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市出租車的收費(fèi)標(biāo)準(zhǔn)是:3千米以內(nèi)(含3千米),收起步價(jià)8元;3千米以上至8千米以內(nèi)(含8千米),超出3千米的部分按元/千米收。8千米以上,超出8千米的部分按2元/千米收取.
(1)計(jì)算某乘客搭乘出租車行駛7千米時(shí)應(yīng)付的車費(fèi);
(2)試寫出車費(fèi) (元)與里程 (千米)之間的函數(shù)解析式并畫出圖像;
(3)小陳周末外出,行程為10千米,他設(shè)計(jì)了兩種方案:
方案1:分兩段乘車,先乘一輛行駛5千米,下車換乘另一輛車再行5千米至目的地
方案2:只乘一輛車至目的地,試問:以上哪種方案更省錢,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 為定義在 上的偶函數(shù),當(dāng) 時(shí),有 ,且當(dāng) 時(shí), ,給出下列命題:
① 的值為 ;
②函數(shù) 在定義域上為周期是2的周期函數(shù);
③直線 與函數(shù) 的圖像有1個(gè)交點(diǎn);
④函數(shù) 的值域?yàn)? .
其中正確的命題序號(hào)有 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com