【題目】已知函數(shù),則f(f(-1))=______;不等式f(x)≥1的解集為______

【答案】1 [-1,1]

【解析】

根據(jù)題意,由函數(shù)的解析式計算可得f(-1)的值進而計算可得f(f(-1))的值,對于f(x)≥1,結合函數(shù)的解析式分2種情況討論:①,x≤0,f(x)≥1x+2≥1x≤0,②,x>0,f(x)≥1-x+2≥1x>0,分別解出不等式,綜合即可得不等式的解集.

根據(jù)題意,函數(shù),
f(-1)=(-1)+2=1,f(f(-1))=-1+2=1;
對于f(x)≥1,分2種情況討論
①,x≤0,f(x)≥1x+2≥1x≤0,
解可得:-1≤x≤0,
②,x>0,f(x)≥1-x+2≥1x>0,
解可得:0<x≤1,
綜合可得:不等式f(x)≥1的解集為[-1,1];
故答案為:1、[-1,1].

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知為常數(shù),函數(shù).

(1)當時,求關于的不等式的解集

(2)當時,若函數(shù)上存在零點,求實數(shù)的取值范圍;

(3)當時,對于給定的,且,證明:關于的方程在區(qū)間內有一個實根.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面為正方形,平面底面, ,點分別是的中點.

)求證: 平面;

)求證: 平面;

)在棱上求作一點,使得,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在上的函數(shù)是奇函數(shù).

(1)求的值;

(2)若對任意的,不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,從參加環(huán)保知識競賽的學生中抽出40名,將其成績(均為整數(shù))整理后畫出的頻率分布直方圖如下:

觀察圖形,回答下列問題:

(1)估計這次環(huán)保知識競賽成績的中位數(shù);

(2)從成績是80分以上(包括80分)的學生中選兩人,求他們在同一分數(shù)段的概率?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知F1、F2分別是雙曲線 =1(a>0,b>0)的左右焦點,若在雙曲線的右支上存在一點M,使得( + =0(其中O為坐標原點),且| |= | |,則雙曲線離心率為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于函數(shù)f(x),若a,b,c∈R,f(a),f(b),f(c)為某一三角形的三邊長,則稱f(x)為“可構造三角形函數(shù)”.已知函數(shù)f(x)=是“可構造三角形函數(shù)”,則實數(shù)t的取值范圍是(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知 ,過點作圓的切線,切點分別為、,且為原點).

)求點的軌跡方程.

)求四邊形面積的最小值.

)設 ,在圓上存在點,使得,求的最大值和最小值(直接寫出結果即可).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ax-1(x≥0).其中a>0,a≠1.

(1)若f(x)的圖象經(jīng)過點(,2),求a的值;

(2)求函數(shù)y=f(x)(x≥0)的值域.

查看答案和解析>>

同步練習冊答案