【題目】已知函數(shù)f(x)= ax2﹣(2a+1)x+2lnx(a∈R)
(1)當(dāng)a= 時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)g(x)=(x2﹣2x)ex , 如果對(duì)任意x1∈(0,2],均存在x2∈(0,2],使得f(x1)<g(x2)成立,求實(shí)數(shù)a的取值范圍.

【答案】
(1)解:f′(x)=ax﹣(2a+1)+

所以a= 時(shí),f′(x)= ,

其單調(diào)遞增區(qū)間為(0, ),(2,+∞),單調(diào)遞減區(qū)間為(


(2)解:若要命題成立,只需當(dāng)x∈(0,2]時(shí),f(x)max<g(x)max

由g′(x)=(x2﹣2)ex可知,當(dāng)x∈(0,2]時(shí),g(x)在區(qū)間(0, )上單調(diào)遞減,在區(qū)間( ,2]上單調(diào)遞增,

g(0)=g(2)=0,故g(x)max=0,

所以只需f(x)max<0.

對(duì)函數(shù)f(x)來(lái)說(shuō),f′(x)=ax﹣(2a+1)+ =

當(dāng)a≤0時(shí),由x∈(0,2],f′(x)≥0,函數(shù)f(x)在區(qū)間(0,2]上單調(diào)遞增,

f(x)max=f(2)=2ln2﹣2a﹣2<0,故ln2﹣1<a≤0

當(dāng)0<a≤2時(shí), ,由x∈(0,2),ax﹣1≥0,故f′(x)≥0,

函數(shù)f(x)在區(qū)間(0,2)上單調(diào)遞增,

f(x)max=f(2)=2ln2﹣2a﹣2<0,a>ln2﹣1

故0<a≤2滿足題意

當(dāng)a> 時(shí), ,函數(shù)f(x)在區(qū)間(0, )上單調(diào)遞增,在區(qū)間 上單調(diào)遞減,

f(x)max=f( =﹣2lna﹣ ﹣2.

若a≥1時(shí),顯然小于0,滿足題意;

時(shí),可令h(a)=﹣2lna﹣ ﹣2, ,

可知該函數(shù)在 時(shí)單調(diào)遞減,

,滿足題意,所以a> 滿足題意.

綜上所述:實(shí)數(shù)a的取值范圍是(ln2﹣1,+∞)


【解析】(1)利用導(dǎo)數(shù)直接求單調(diào)區(qū)間;(2)若要命題成立,只需當(dāng)x∈(0,2]時(shí),f(x)max<g(x)max . 分別求出最大值即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)x(單位:千元)對(duì)年銷售量y(單位:t)和年利潤(rùn)z(單位:千元)的影響.對(duì)近8年的年宣傳費(fèi)xi和年銷售量yi(i=1,2,,8)數(shù)據(jù)作了初步處理, 得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.

46.6

563

6.8

289.8

1.6

1469

108.8

其中wi= , =
(Ⅰ)根據(jù)散點(diǎn)圖判斷,y=a+bx與y=c+d 哪一個(gè)適宜作為年銷售量y關(guān)于年宣傳費(fèi)x的回歸方程類型?(給出判斷即可,不必說(shuō)明理由)
(Ⅱ)根據(jù)(Ⅰ)的判斷結(jié)果及表中數(shù)據(jù),建立y關(guān)于x的回歸方程;
(Ⅲ)已知這種產(chǎn)品的年利潤(rùn)z與x、y的關(guān)系為z=0.2y﹣x.根據(jù)(Ⅱ)的結(jié)果回答下列問題:
(i)年宣傳費(fèi)x=49時(shí),年銷售量及年利潤(rùn)的預(yù)報(bào)值是多少?
(ii)年宣傳費(fèi)x為何值時(shí),年利潤(rùn)的預(yù)報(bào)值最大?
附:對(duì)于一組數(shù)據(jù)(u1 , v1),(u2 , v2),,(un , vn),其回歸直線v=α+βμ的斜率和截距的最小二乘估計(jì)分別為: = , =

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】按如圖所示的程序框圖操作: (Ⅰ)寫出輸出的數(shù)所組成的數(shù)集.若將輸出的數(shù)按照輸出的順序從前往后依次排列,則得到數(shù)列{an},請(qǐng)寫出數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)如何變更A框內(nèi)的賦值語(yǔ)句,使得根據(jù)這個(gè)程序框圖所輸出的數(shù)恰好是數(shù)列{2n}的前7項(xiàng)?
(Ⅲ)如何變更B框內(nèi)的賦值語(yǔ)句,使得根據(jù)這個(gè)程序框圖所輸出的數(shù)恰好是數(shù)列{3n﹣2}的前7項(xiàng)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2﹣2x﹣8,g(x)=2x2﹣4x﹣16,
(1)求不等式g(x)<0的解集;
(2)若對(duì)一切x>2,均有f(x)≥(m+2)x﹣m﹣15成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知F1 , F2是橢圓與雙曲線的公共焦點(diǎn),P是它們的一個(gè)公共點(diǎn),且|PF1|>|PF2|,橢圓的離心率為e1 , 雙曲線的離心率為e2 , 若|PF2|=|F1F2|,則 + 的最小值為(
A.6+2
B.8
C.6+2
D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= ,x∈R.
(1)分別求出f(2)+f( ),f(3)+f( ),f(4)+f( )的值;
(2)根據(jù)(1)歸納猜想出f(x)+f( )的值,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某奶茶店為了解白天平均氣溫與某種飲料銷量之間的關(guān)系進(jìn)行分析研究,記錄了2月21日至2月25日
的白天平均氣溫x(℃)與該奶茶店的這種飲料銷量y(杯),得到如表數(shù)據(jù):

平均氣溫x(℃)

9

11

12

10

8

銷量y(杯)

23

26

30

25

21


(1)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程 = x+ ;
(2)試根據(jù)(1)求出的線性回歸方程,預(yù)測(cè)平均氣溫約為20℃時(shí)該奶茶店的這種飲料銷量.
(參考: = , = ;9×23+11×26+12×30+10×25+8×21=1271,92+112+122+102+82=510)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)f(x)是定義在R上的奇函數(shù),且在(﹣∞,0]上滿足 <0,且f(1)=0,則使得 <0的x的取值范圍是(
A.(﹣∞,1)
B.(﹣∞,﹣1)∪(1,+∞)
C.(﹣1,0)∪(1,+∞)
D.(﹣1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,角A,B,C所對(duì)的邊分別是a,b,c,且.

(1)證明:

(2)若,求.

查看答案和解析>>

同步練習(xí)冊(cè)答案