(本小題滿(mǎn)分12分)已知其中是自然對(duì)數(shù)的底 .
(1)若在處取得極值,求的值;
(2)求的單調(diào)區(qū)間;
(3)設(shè),存在,使得成立,求 的取值范圍.
(Ⅰ) 。(Ⅱ) 綜上所述,當(dāng)時(shí),的減區(qū)間是,
當(dāng)時(shí),的減區(qū)間是,增區(qū)間是. (III) .
解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分14分)
已知函數(shù)
(1)判斷的單調(diào)性并證明;
(2)若滿(mǎn)足,試確定的取值范圍。
(3)若函數(shù)對(duì)任意時(shí),恒成立,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知A、B、C是直線(xiàn)l上的三點(diǎn),向量、、滿(mǎn)足,(O不在直線(xiàn)l上)
(1)求的表達(dá)式;
(2)若函數(shù)在上為增函數(shù),求a的范圍;
(3)當(dāng)時(shí),求證:對(duì)的正整數(shù)n成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分14分)設(shè)函數(shù)。
(1)若在處取得極值,求的值;
(2)若在定義域內(nèi)為增函數(shù),求的取值范圍;
(3)設(shè),當(dāng)時(shí),
求證:① 在其定義域內(nèi)恒成立;
求證:② 。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題分12分)
定義.
(Ⅰ)求曲線(xiàn)與直線(xiàn)垂直的切線(xiàn)方程;
(Ⅱ)若存在實(shí)數(shù)使曲線(xiàn)在點(diǎn)處的切線(xiàn)斜率為,且,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)
已知函數(shù).().
(1)當(dāng)時(shí),求函數(shù)的極值;
(2)若對(duì),有成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題12分)
已知函數(shù)
(1)判斷函數(shù)在上的單調(diào)性;
(2)是否存在實(shí)數(shù),使曲線(xiàn)在點(diǎn)處的切線(xiàn)與軸垂直?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)設(shè).如果對(duì)任意,,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分14分)
已知的圖像在點(diǎn)處的切線(xiàn)與直線(xiàn)平行.
(1)求a,b滿(mǎn)足的關(guān)系式;
(2)若上恒成立,求a的取值范圍;
(3)證明: ()
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com