【題目】在數(shù)列中,若是正整數(shù),且,…,則稱為“絕對(duì)差數(shù)列”.
(1)舉出一個(gè)前5項(xiàng)不為零的“絕對(duì)差數(shù)列”(只要求寫出前10項(xiàng));
(2)若“絕對(duì)差數(shù)列”中,,數(shù)列滿足,,…,分別判斷當(dāng)時(shí),與的極限是否存在?如果存在,求出其極限值.
【答案】(1),,,,,,,,,.(答案不惟一)
(2)的極限不存在,;
【解析】
(1)根據(jù),是正整數(shù),且,,4,5,,能夠舉出一個(gè)前五項(xiàng)不為零的“絕對(duì)差數(shù)列”.
(2)由絕對(duì)差數(shù)列中,,利用,知該數(shù)列自第20項(xiàng)開始.每三個(gè)相鄰的項(xiàng)周期地取值3,0,3.所以不存在..
解:(1),,,,,,,,,.(答案不惟一)
(2)因?yàn)樵诮^對(duì)差數(shù)列中,.所以自第20項(xiàng)開始,該數(shù)列是,,,,,,,,
即自第20項(xiàng)開始.每三個(gè)相鄰的項(xiàng)周期地取值3,0,3.所以當(dāng)時(shí),的極限不存在.
當(dāng)時(shí),,
所以
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了調(diào)查觀眾對(duì)電影“復(fù)仇者聯(lián)盟4”結(jié)局的滿意程度,研究人員在某電影院隨機(jī)抽取了1000名觀眾作調(diào)查,所得結(jié)果如下所示,其中不喜歡“復(fù)仇者聯(lián)盟4”的結(jié)局的觀眾占被調(diào)查觀眾總數(shù)的.
男性觀眾 | 女性觀眾 | 總計(jì) | |
喜歡“復(fù)仇者聯(lián)盟4”的結(jié)局 | 400 | ||
不喜歡“復(fù)仇者聯(lián)盟4”的結(jié)局 | 200 | ||
總計(jì) |
(Ⅰ)完善上述列聯(lián)表;
(Ⅱ)是否有99.9%的把握認(rèn)為觀眾對(duì)電影“復(fù)仇者聯(lián)盟4”結(jié)局的滿意程度與性別具有相關(guān)性?
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,已知圓圓心為,過點(diǎn)且斜率為的直線與圓相交于不同的兩點(diǎn)、.
()求的取值范圍;
()是否存在常數(shù),使得向量與共線?如果存在,求值;如果不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中為自然對(duì)數(shù)的底數(shù).
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)設(shè),證明:函數(shù)有兩個(gè)零點(diǎn),且.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列和滿足:,,,其中為實(shí)數(shù),為正整數(shù).
(Ⅰ)證明:對(duì)任意的實(shí)數(shù),數(shù)列不是等比數(shù)列;
(Ⅱ)證明:當(dāng)時(shí),數(shù)列是等比數(shù)列;
(Ⅲ)設(shè)為數(shù)列的前項(xiàng)和,是否存在實(shí)數(shù),使得對(duì)任意正整數(shù),都有?若存在,求的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè).
(1)若,求數(shù)列的通項(xiàng)公式;
(2)若,問:是否存在實(shí)數(shù)c使得對(duì)所有成立?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在等比數(shù)列{an}中,=2,,=128,數(shù)列{bn}滿足b1=1,b2=2,且{}為等差數(shù)列.
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在斜三棱柱中,AB=1,AC=2,,AB⊥AC,底面ABC.
(1)求直線與平面所成角的正弦值;
(2)求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com