【題目】在數(shù)列中,若是正整數(shù),且,…,則稱為“絕對(duì)差數(shù)列”.

1)舉出一個(gè)前5項(xiàng)不為零的“絕對(duì)差數(shù)列”(只要求寫出前10項(xiàng));

2)若“絕對(duì)差數(shù)列”中,,數(shù)列滿足,…,分別判斷當(dāng)時(shí),的極限是否存在?如果存在,求出其極限值.

【答案】1,,,,,,.(答案不惟一)

2的極限不存在,

【解析】

1)根據(jù),是正整數(shù),且,4,5,能夠舉出一個(gè)前五項(xiàng)不為零的“絕對(duì)差數(shù)列”.

2)由絕對(duì)差數(shù)列,,利用,知該數(shù)列自第20項(xiàng)開始.每三個(gè)相鄰的項(xiàng)周期地取值3,0,3.所以不存在.

解:(1,,,,,,,,.(答案不惟一)

2)因?yàn)樵诮^對(duì)差數(shù)列,.所以自第20項(xiàng)開始,該數(shù)列是,,,,,,

即自第20項(xiàng)開始.每三個(gè)相鄰的項(xiàng)周期地取值3,03.所以當(dāng)時(shí),的極限不存在.

當(dāng)時(shí),,

所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了調(diào)查觀眾對(duì)電影復(fù)仇者聯(lián)盟4”結(jié)局的滿意程度,研究人員在某電影院隨機(jī)抽取了1000名觀眾作調(diào)查,所得結(jié)果如下所示,其中不喜歡復(fù)仇者聯(lián)盟4”的結(jié)局的觀眾占被調(diào)查觀眾總數(shù)的.

男性觀眾

女性觀眾

總計(jì)

喜歡復(fù)仇者聯(lián)盟4”的結(jié)局

400

不喜歡復(fù)仇者聯(lián)盟4”的結(jié)局

200

總計(jì)

(Ⅰ)完善上述列聯(lián)表;

(Ⅱ)是否有99.9%的把握認(rèn)為觀眾對(duì)電影復(fù)仇者聯(lián)盟4”結(jié)局的滿意程度與性別具有相關(guān)性?

附:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,已知圓圓心為,過點(diǎn)且斜率為的直線與圓相交于不同的兩點(diǎn)、

)求的取值范圍;

)是否存在常數(shù),使得向量共線?如果存在,求值;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為自然對(duì)數(shù)的底數(shù).

(Ⅰ)討論函數(shù)的單調(diào)性;

(Ⅱ)設(shè),證明:函數(shù)有兩個(gè)零點(diǎn),且

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足:,,其中為實(shí)數(shù),為正整數(shù).

)證明:對(duì)任意的實(shí)數(shù),數(shù)列不是等比數(shù)列;

)證明:當(dāng)時(shí),數(shù)列是等比數(shù)列;

)設(shè)為數(shù)列的前項(xiàng)和,是否存在實(shí)數(shù),使得對(duì)任意正整數(shù),都有?若存在,求的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè).

1)若,求數(shù)列的通項(xiàng)公式;

2)若,問:是否存在實(shí)數(shù)c使得對(duì)所有成立?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】考察下列無窮數(shù)列,判斷是否有極限,若有,求出極限;若沒有,請(qǐng)說明理由.

1

2

3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在等比數(shù)列{an}中,=2,,=128,數(shù)列{bn}滿足b1=1,b2=2,且{}為等差數(shù)列.

(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;

(2)求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在斜三棱柱中,AB=1,AC=2,ABAC,底面ABC.

1)求直線與平面所成角的正弦值;

2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案