【題目】已知等差數(shù)列{an}滿足:a2=5,a5+a7=26,數(shù)列{an}的前n項和為Sn .
(1)求an及Sn;
(2)設(shè){bn﹣an}是首項為1,公比為3的等比數(shù)列,求數(shù)列{bn}的前n項和Tn .
【答案】
(1)解:設(shè)等差數(shù)列{an}的公差為d,因為a2=5,a5+a7=26,
所以 ,解得a1=3,d=2,
所以an=3+2(n﹣1)=2n+1,
Sn=3n+ ×2=n2+2n.
(2)解:∵{bn﹣an}是首項為1,公比為3的等比數(shù)列,
∴bn﹣an=3n﹣1,所以 bn=an+3n﹣1,
∴Tn=Sn+(1+3+32+33+…+3n﹣1)=n2+2n+ .
【解析】(1)利用通項公式列方程求出首項和公差,代入通項公式和求和公式即可;(2)根據(jù)等比數(shù)列的通項公式得出bn , 使用分組求和得出Tn .
【考點精析】認(rèn)真審題,首先需要了解等差數(shù)列的前n項和公式(前n項和公式:),還要掌握數(shù)列的前n項和(數(shù)列{an}的前n項和sn與通項an的關(guān)系)的相關(guān)知識才是答題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a>0,b∈R,函數(shù)f(x)=4ax2﹣2bx﹣a+b,x∈[0,1].
(1)當(dāng)a=b=2時,求函數(shù)f(x)的最大值;
(2)證明:函數(shù)f(x)的最大值|2a﹣b|+a;
(3)證明:f(x)+|2a﹣b|+a≥0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn , 通項公式為 .
(1)計算f(1),f(2),f(3)的值;
(2)比較f(n)與1的大小,并用數(shù)學(xué)歸納法證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 (a>b>0)的右焦點F(1,0),離心率為 ,過F作兩條互相垂直的弦AB,CD,設(shè)AB,CD的中點分別為M,N.
(1)求橢圓的方程;
(2)證明:直線MN必過定點,并求出此定點坐標(biāo);
(3)若弦AB,CD的斜率均存在,求△FMN面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C1: (a>b>0)的離心率為 ,且過點(1, ).
(1)求C1的方程;
(2)設(shè)直線l同時與橢圓C1和拋物線C2:y2=4x相切,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠有100名工人接受了生產(chǎn)1000臺某產(chǎn)品的總?cè)蝿?wù),每臺產(chǎn)品由9個甲型裝置和3個乙型裝置配套組成,每個工人每小時能加工完成1個甲型裝置或3個乙型裝置.現(xiàn)將工人分成兩組分別加工甲型和乙型裝置.設(shè)加工甲型裝置的工人有x人,他們加工完甲型裝置所需時間為t1小時,其余工人加工完乙型裝置所需時間為t2小時.
設(shè)f(x)=t1+t2.
(Ⅰ)求f(x)的解析式,并寫出其定義域;
(Ⅱ)當(dāng)x等于多少時,f(x)取得最小值?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直三棱柱ABC-A1B1C1中,AB=AC,E是BC的中點,求證:
(Ⅰ)平面AB1E⊥平面B1BCC1;
(Ⅱ)A1C//平面AB1E.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com