【題目】已知以點(diǎn)為圓心的圓被直線:截得的弦長為.
(1)求圓的標(biāo)準(zhǔn)方程;
(2)求過與圓相切的直線方程;
(3)若是軸的動點(diǎn),,分別切圓于,兩點(diǎn).試問:直線是否恒過定點(diǎn)?若是,求出恒過點(diǎn)坐標(biāo);若不是,說明理由.
【答案】(1);(2)或;(3)見解析
【解析】
(1)根據(jù)圓心到直線的距離,半弦長、半徑、構(gòu)成直角三角形,求解即可;(2)利用圓心到直線的距離等于等于半徑求解(3)由題意,則,在以為直徑的圓上,設(shè),寫出圓的方程,與已知圓聯(lián)立,得到含參的直線方程,確定是否過定點(diǎn).
(1)圓心到直線的距離為,設(shè)圓的半徑為,則,圓為.
(2)設(shè)過點(diǎn)的切線方程為,即,
圓心到直線的距離為,
解得或,
所以過點(diǎn)的切線方程為或;
(3)由題意,則,在以為直徑的圓上,
設(shè),則以為直徑的圓的方程:.
即,
與圓:,
聯(lián)立得:,
令得,,
故無論取何值時,直線恒過定點(diǎn).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項(xiàng)等比數(shù)列的前項(xiàng)和為,首項(xiàng),且,正項(xiàng)數(shù)列滿足,.
(1)求數(shù)列,的通項(xiàng)公式;
(2)記,是否存在正整數(shù),使得對任意正整數(shù),恒成立?若存在,求正整數(shù)的最小值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.已知點(diǎn)的直角坐標(biāo)為,曲線的極坐標(biāo)方程為,直線過點(diǎn)且與曲線相交于,兩點(diǎn).
(1)求曲線的直角坐標(biāo)方程;
(2)若,求直線的直角坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國南宋數(shù)學(xué)家楊輝1261年所著的《詳解九章算法》一書里出現(xiàn)了如圖所示的表,即楊輝三角,這是數(shù)學(xué)史上的一個偉大成就.在“楊輝三角”中,已知第行的所有數(shù)字之和為,若去除所有為1的項(xiàng),依次構(gòu)成數(shù)列2,3,3,4,6,4,5,10,10,5,……,則此數(shù)列的前56項(xiàng)和為( )
A. 2060B. 2038C. 4084D. 4108
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知拋物線x2=2py(p>0)上的點(diǎn)M(m,1)到焦點(diǎn)F的距離為2,
(1)求拋物線的方程;
(2)如圖,點(diǎn)E是拋物線上異于原點(diǎn)的點(diǎn),拋物線在點(diǎn)E處的切線與x軸相交于點(diǎn)P,直線PF與拋物線相交于A,B兩點(diǎn),求△EAB面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】海南沿海某次超強(qiáng)臺風(fēng)過后,當(dāng)?shù)厝嗣穹e極恢復(fù)生產(chǎn),焊接工王師傅每天都很忙碌.一天他遇到了一個難題:如圖所示,有一塊扇形鋼板,半徑為米,圓心角,施工要求按圖中所畫的那樣,在鋼板上裁下一塊平行四邊形鋼板,要求使裁下的鋼板面積最大.請你幫助王師傅解決此問題.連接,設(shè),過作,垂足為.
(1)求線段的長度(用來表示);
(2)求平行四邊形面積的表達(dá)式(用來表示);
(3)為使平行四邊形面積最大,等于何值?最大面積是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小陳同學(xué)進(jìn)行三次定點(diǎn)投籃測試,已知第一次投籃命中的概率為,第二次投籃命中的概率為,前兩次投籃是否命中相互之間沒有影響.第三次投籃受到前兩次結(jié)果的影響,如果前兩次投籃至少命中一次,則第三次投籃命中的概率為,否則為.
(1)求小陳同學(xué)三次投籃至少命中一次的概率;
(2)記小陳同學(xué)三次投籃命中的次數(shù)為隨機(jī)變量,求的概率分布及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,對于任意實(shí)數(shù),橢圓被下列直線所截得的弦長與被直線所截得的弦長不可能相等的是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列的通項(xiàng)公式為(, ),數(shù)列定義如下:對于正整數(shù), 是使得不等式成立的所有中的最小值.
(1)若, ,求;
(2)若, ,求數(shù)列的前項(xiàng)和公式;
(3)是否存在和,使得 ?如果存在,求和的取值范圍;如果不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com