【題目】某公司舉辦捐步公益活動,參與者通過捐贈每天的運動步數(shù)獲得公司提供的牛奶,再將牛奶捐贈給留守兒童.此活動不但為公益事業(yè)作出了較大的貢獻,公司還獲得了相應(yīng)的廣告效益.據(jù)測算,首日參與活動人數(shù)為人,以后每天人數(shù)比前一天都增加,天后捐步人數(shù)穩(wěn)定在第天的水平,假設(shè)此項活動的啟動資金為萬元,每位捐步者每天可以使公司收益元(以下人數(shù)精確到人,收益精確到元).
(1)求活動開始后第天的捐步人數(shù),及前天公司的捐步總收益;
(2)活動開始第幾天以后公司的捐步總收益可以收回啟動資金并有盈余?
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體中,底面為菱形,,,平面,,.
(1)若點,分別在,上,且,,證明平面.
(2)若平面平面,求平面把多面體分成大、小兩部分的體積比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線(為參數(shù)),將曲線上的所有點的橫坐標(biāo)保持不變,縱坐標(biāo)縮短為原來的后得到曲線;以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求曲線和直線的直角坐標(biāo)方程;
(2)已知,設(shè)直線與曲線交于不同的、兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點分別為、.經(jīng)過點且傾斜角為的直線與橢圓交于、兩點(其中點在軸上方),的周長為8.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)如圖,把平面沿軸折起來,使軸正半軸和軸確定的半平面,與負半軸和軸所確定的半平面互相垂直.
①若,求異面直線和所成角的大小;
②若折疊后的周長為,求的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為正方形,底面,,為線段的中點,為線段上的動點.
(1)平面與平面是否互相垂直?如果垂直,請證明;如果不垂直,請說明理由.
(2)若,為線段的三等分點,求多面體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知分別是雙曲線的左、右焦點,過斜率為的直線交雙曲線的左、右兩支分別于兩點,過且與垂直的直線交雙曲線的左、右兩支分別于兩點.
(1)求的取值范圍;
(2)求四邊形面積的最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)滿足:對于任意正數(shù),都有,且,則稱函數(shù)為“L函數(shù)”.
(1)試判斷函數(shù)與是否是“L函數(shù)”;
(2)若函數(shù)為“L函數(shù)”,求實數(shù)a的取值范圍;
(3)若函數(shù)為“L函數(shù)”,且,求證:對任意,都有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,平面PCD,,,,E為AD的中點,AC與BE相交于點O.
(1)證明:平面ABCD.
(2)求直線BC與平面PBD所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com