【題目】已知雙曲線經(jīng)過點M( ).
(1)如果此雙曲線的漸近線為 ,求雙曲線的標準方程;
(2)如果此雙曲線的離心率e=2,求雙曲線的標準方程.

【答案】
(1)解:∵雙曲線的近線為y= x,

∴設雙曲線方程為 ,

∵點M( )在雙曲線上,

,得k=3.

∴雙曲線的標準方程為


(2)解:∵ ,又∵c2=a2+b2,∴

①當雙曲線的焦點在x軸上時,設雙曲線標準方程為 ,

∵點M( )在雙曲線上,∴ ,

解得a2=4,b2=12,

則所求雙曲線標準方程為

②當雙曲線的焦點在y軸上時,設雙曲線標準方程為 ,

∵點M( )在雙曲線上,∴ ,

解得a2=4,b2=12,

則所求雙曲線標準方程為

故所求雙曲線方程為


【解析】(1)由雙曲線的漸近線方程設出雙曲線的方程是,把已知點代入雙曲線的方程可得k值,則雙曲線的標準方程可求;(2)由雙曲線的離心率e=2,得到a與b的關系,分類設出雙曲線方程,代入點的坐標求解.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】

已知橢圓的離心率為,且點在橢圓上.

(Ⅰ)求橢圓的標準方程;

(Ⅱ)若斜率為k的直線交橢圓AB兩點,求△OAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于函數(shù),若存在常數(shù),對于任意,不等式都成立,則稱直線是函數(shù)的分界線. 已知函數(shù)為自然對數(shù)的底, 為常數(shù)

(1)討論函數(shù)的單調(diào)性;

(2)設,試探究函數(shù)與函數(shù)是否存在“分界線”?若存在,求出分界線方程;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線x2=y+1上一定點A(﹣1,0)和兩動點P,Q,當PA⊥PQ時,點Q的橫坐標的取值范圍是(
A.(﹣∞,﹣3]
B.[1,+∞)
C.[﹣3,1]
D.(﹣∞,﹣3]∪[1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】命題p:若0<a<1,則不等式ax2﹣2ax+1>0在R上恒成立,命題q:a≥1是函數(shù) 在(0,+∞)上單調(diào)遞增的充要條件;在命題 ①“p且q”、②“p或q”、③“非p”、④“非q”中,假命題是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖(1)所示,已知四邊形是由直角△和直角梯形拼接而成的,其中

.且點為線段的中點, , 現(xiàn)將△沿進行翻折,使得二面角

的大小為,得到圖形如圖(2)所示,連接,點分別在線段上.

(1)證明: ;

(2)若三棱錐的體積為四棱錐體積的,求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù) 的最小正周期為π,若其圖象向左平移 個單位后得到的函數(shù)為奇函數(shù),則函數(shù)f(x)的圖象(
A.關于點 對稱
B.關于點 對稱
C.關于直線 對稱
D.關于直線 對稱

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐中,底面為平行四邊形, , , 點在底面內(nèi)的射影在線段上,且, 的中點, 在線段上,且.

(1)當時,證明:平面平面;

(2)當時,求平面與平面所成的二面角的正弦值及四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】用斜二測畫法作出邊長為3cm、高4cm的矩形的直觀圖.

查看答案和解析>>

同步練習冊答案