【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是邊長為2的菱形,∠DAB=60°,AD⊥PD,點(diǎn)F為棱PD的中點(diǎn).
(1)在棱BC上是否存在一點(diǎn)E,使得CF∥平面PAE,并說明理由;
(2)若AC⊥PB,二面角D﹣FC﹣B的余弦值為時(shí),求直線AF與平面BCF所成的角的正弦值.
【答案】(1)存在,見解析(2).
【解析】
(1)取點(diǎn)E為棱BC的中點(diǎn),取PA的中點(diǎn)Q,連結(jié)EQ、FQ,利用已知結(jié)合三角形中位線定理可證四邊形CEQF為平行四邊形,得到CF∥EQ,再由直線與平面平行的判定得CF∥平面PAE;
(2)取AB中點(diǎn)M,以D為坐標(biāo)原點(diǎn),分別以DM,DC,DP所在直線為x,y,z軸建立空間直角坐標(biāo)系.設(shè)FD=a,利用平面FBC與平面DFC的所成角的余弦值求得a,可得平面BCF的一個(gè)法向量及的坐標(biāo)再由兩向量所成角的余弦值可得FA與平面BCF所成的角的正弦值.
(1)在棱BC上存在點(diǎn)E,使得CF∥平面PAE,點(diǎn)E為棱BC的中點(diǎn).
證明:取PA的中點(diǎn)Q,連結(jié)EQ、FQ,
由題意,FQ∥AD且,CE∥AD且,
故CE∥FQ且CE=FQ.
∴四邊形CEQF為平行四邊形.
∴CF∥EQ,又平面PAE,在平面PAE內(nèi),
∴CF∥平面PAE;
(2)取AB中點(diǎn)M,
以D為坐標(biāo)原點(diǎn),分別以DM,DC,DP所在直線為x,y,z軸建立空間直角坐標(biāo)系.
設(shè)FD=a,則D(0,0,0),F(0,0,a),C(0,2,0),
B(,1,0),A().
,.
設(shè)平面FBC的一個(gè)法向量為.
由,取x=1,得;
取平面DFC的一個(gè)法向量為.
由題意,,解得a.
∴.
設(shè)直線AF與平面BCF所成的角為θ,
則.
即直線AF與平面BCF所成的角的正弦值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是某機(jī)械零件的幾何結(jié)構(gòu),該幾何體是由兩個(gè)相同的直四棱柱組合而成的,且前后、左右、上下均對稱,每個(gè)四棱柱的底面都是邊長為2的正方形,高為4,且兩個(gè)四棱柱的側(cè)棱互相垂直.則這個(gè)幾何體有________個(gè)面,其體積為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|),y=f(x)的圖象關(guān)于直線x對稱,且與x軸交點(diǎn)的橫坐標(biāo)構(gòu)成一個(gè)公差為的等差數(shù)列,則函數(shù)f(x)的導(dǎo)函數(shù)的一個(gè)單調(diào)減區(qū)間為( )
A.[,]B.[,]C.[,]D.[,]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,半圓O的直徑AB=2,點(diǎn)C在AB的延長線上,BC=1,點(diǎn)P為半圓上異于A,B兩點(diǎn)的一個(gè)動點(diǎn),以點(diǎn)P為直角頂點(diǎn)作等腰直角,且點(diǎn)D與圓心O分布在PC的兩側(cè),設(shè).
(1)把線段PC的長表示為的函數(shù);
(2)求四邊形ACDP面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,由經(jīng)過伸縮變換得到曲線,以原點(diǎn)為極點(diǎn),軸非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的極坐標(biāo)方程以及曲線的直角坐標(biāo)方程;
(2)若直線的極坐標(biāo)方程為,與曲線、曲線在第一象限交于、,且,點(diǎn)的極坐標(biāo)為,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《高中數(shù)學(xué)課程標(biāo)準(zhǔn)》(2017版)規(guī)定了數(shù)學(xué)直觀想象學(xué)科的六大核心素養(yǎng),為了比較甲、乙兩名高二學(xué)生的數(shù)學(xué)核心素養(yǎng)水平,現(xiàn)以六大素養(yǎng)為指標(biāo)對二人進(jìn)行了測驗(yàn),根據(jù)測驗(yàn)結(jié)果繪制了雷達(dá)圖(如圖,每項(xiàng)指標(biāo)值滿分為5分,分值高者為優(yōu)),則下面敘述正確的是(注:雷達(dá)圖,又可稱為戴布拉圖、蜘蛛網(wǎng)圖,可用于對研究對象的多維分析)( )
A.甲的直觀想象素養(yǎng)高于乙
B.甲的數(shù)學(xué)建模素養(yǎng)優(yōu)于數(shù)據(jù)分析素養(yǎng)
C.乙的數(shù)學(xué)建模素養(yǎng)與數(shù)學(xué)運(yùn)算素養(yǎng)一樣
D.乙的六大素養(yǎng)整體水平低于甲
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,右焦點(diǎn)為,左頂點(diǎn)為A,右頂點(diǎn)B在直線上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)點(diǎn)P是橢圓C上異于A,B的點(diǎn),直線交直線于點(diǎn),當(dāng)點(diǎn)運(yùn)動時(shí),判斷以為直徑的圓與直線PF的位置關(guān)系,并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著食品安全問題逐漸引起人們的重視,有機(jī)、健康的高端綠色蔬菜越來越受到消費(fèi)者的歡迎,同時(shí)生產(chǎn)—運(yùn)輸—銷售一體化的直銷供應(yīng)模式,不僅減少了成本,而且減去了蔬菜的二次污染等問題.
(1)在有機(jī)蔬菜的種植過程中,有機(jī)肥料使用是必不可少的.根據(jù)統(tǒng)計(jì)某種有機(jī)蔬菜的產(chǎn)量與有機(jī)肥料的用量有關(guān)系,每個(gè)有機(jī)蔬菜大棚產(chǎn)量的增加量(百斤)與使用堆漚肥料(千克)之間對應(yīng)數(shù)據(jù)如下表
使用堆漚肥料(千克) | 2 | 4 | 5 | 6 | 8 |
產(chǎn)量的增加量(百斤) | 3 | 4 | 4 | 4 | 5 |
依據(jù)表中的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;并根據(jù)所求線性回歸方程,估計(jì)如果每個(gè)有機(jī)蔬菜大棚使用堆漚肥料10千克,則每個(gè)有機(jī)蔬菜大棚產(chǎn)量增加量是多少百斤?
(2)某大棚蔬菜種植基地將采摘的有機(jī)蔬菜以每份三斤稱重并保鮮分裝,以每份10元的價(jià)格銷售到生鮮超市.“樂購”生鮮超市以每份15元的價(jià)格賣給顧客,如果當(dāng)天前8小時(shí)賣不完,則超市通過促銷以每份5元的價(jià)格賣給顧客(根據(jù)經(jīng)驗(yàn),當(dāng)天能夠把剩余的有機(jī)蔬菜都低價(jià)處理完畢,且處理完畢后,當(dāng)天不再進(jìn)貨).該生鮮超市統(tǒng)計(jì)了100天有機(jī)蔬菜在每天的前8小時(shí)內(nèi)的銷售量(單位:份),制成如下表格(注:,且);
前8小時(shí)內(nèi)的銷售量(單位:份) | 15 | 16 | 17 | 18 | 19 | 20 | 21 |
頻數(shù) | 10 | x | 16 | 6 | 15 | 13 | y |
若以100天記錄的頻率作為每日前8小時(shí)銷售量發(fā)生的概率,該生鮮超市當(dāng)天銷售有機(jī)蔬菜利潤的期望值為決策依據(jù),當(dāng)購進(jìn)17份比購進(jìn)18份的利潤的期望值大時(shí),求的取值范圍.
附:回歸直線方程為,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,長軸的兩個(gè)端點(diǎn)分別為、.短軸的兩個(gè)端點(diǎn)分別為,.菱形的面積為,離心率.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè),經(jīng)過點(diǎn)M作斜率不為0的直線交橢圓C于A、B兩點(diǎn),若,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com