【題目】已知橢圓的右焦點為F,點B是橢圓C的短軸的一個端點,ΔOFB的面積為,橢圓C上的兩點H、G關(guān)于原點O對稱,且、的等差中項為2
(1)求橢圓的方程;
(2)是否存在過點M(2,1)的直線與橢圓C交于不同的兩點P、Q,且使得成立?若存在,試求出直線的方程;若不存在,請說明理由
【答案】(1);(2)存在;
【解析】
(1)由等差中項的性質(zhì)和橢圓的對稱性知,求出.通過三角形的面積以及,推出,,
得到橢圓的方程.
(2)當(dāng)直線與軸垂直時,直線與橢圓相切,不滿足條件,設(shè),,,,直線的方程為,代入橢圓方程,利用韋達(dá)定理.向量關(guān)系.轉(zhuǎn)化求解即可.
(1)由等差中項的性質(zhì)和橢圓的對稱性知,,.
又,,
又,,,,
故橢圓的方程為.
(2)當(dāng)直線與軸垂直時,直線與橢圓相切,不滿足條件,
故可設(shè),,,,直線的方程為,
代入橢圓方程得,
則,,
△,.
,即,
,即,
,
解得,又,
存在滿足條件的直線,其方程為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】1772年德國的天文學(xué)家波得發(fā)現(xiàn)了求太陽的行星距離的法則,記地球距離太陽的平均距離為10,可以算得當(dāng)時已知的六大行星距離太陽的平均距離如下表:
星名 | 水星 | 金星 | 地球 | 火星 | 木星 | 土星 |
與太陽的距離 | 4 | 7 | 10 | 16 | 52 | 100 |
除水星外,其余各星與太陽的距離都滿足波得定則(某一數(shù)列規(guī)律),當(dāng)時德國數(shù)學(xué)家高斯根據(jù)此定則推算,火星和木星之間距離太陽28還有一顆大行星,1801年,意大利天文學(xué)家皮亞齊經(jīng)過觀測,果然找到了火星和木星之間距離太陽28的谷神星以及它所在的小行星帶,請你根據(jù)這個定則,估算從水星開始由近到遠(yuǎn)算,第10個行星與太陽的平均距離大約是( )
A.388B.772C.1540D.3076
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)判斷函數(shù)在上的單調(diào)性,并證明;
(2)若恒成立,求的最小值;
(3)記,求集合中正整數(shù)的個數(shù);
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定點,圓,過R點的直線交圓于M,N兩點過R點作直線交SM于Q點.
(1)求Q點的軌跡方程;
(2)若A,B為Q的軌跡與x軸的左右交點,為該軌跡上任一動點,設(shè)直線AP,BP分別交直線l:于點M,N,判斷以MN為直徑的圓是否過定點。如圓過定點,則求出該定點;如不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,傾斜角為的直線的參數(shù)方程為(為參數(shù)).在以坐標(biāo)原點為極點,軸正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為.
(1)求直線的普通方程與曲線的直角坐標(biāo)方程;
(2)若直線與曲線交于,兩點,且,求直線的傾斜角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在處取得極小值.
(1)求實數(shù)的值;
(2)設(shè),討論函數(shù)的零點個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知F1,F2為橢圓E:y2=1的左、右焦點,過點P(﹣2,0)的直線l與橢圓E有且只有一個交點T.
(1)求△F1TF2的面積;
(2)求證:光線被直線反射后經(jīng)過F2.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com