【題目】以“你我中國夢,全民建小康”為主題、“社會主義核心價值觀”為主線,為了了解兩個地區(qū)的觀眾對2018年韓國平昌冬奧會準備工作的滿意程度,對地區(qū)的100名觀眾進行統(tǒng)計,統(tǒng)計結果如下:

在被調查的全體觀眾中隨機抽取1名“非常滿意”的人是地區(qū)的概率為0.45,且.

(Ⅰ)現(xiàn)從100名觀眾中用分層抽樣的方法抽取20名進行問卷調查,則應抽取“滿意”的地區(qū)的人數(shù)各是多少?

(Ⅱ)在(Ⅰ)抽取的“滿意”的觀眾中,隨機選出3人進行座談,求至少有兩名是地區(qū)觀眾的概率?

(Ⅲ)完成上述表格,并根據(jù)表格判斷是否有的把握認為觀眾的滿意程度與所在地區(qū)有關系

, .

【答案】(Ⅰ) 地區(qū)的“滿意”觀眾,抽取地區(qū)的“滿意”觀眾(Ⅱ) ;(Ⅲ)答案見解析.

【解析】試題分析:

由概率的意義可求得,再根據(jù)已知條件可求得,這樣由分層抽樣的定義可按比例求得兩區(qū)抽取的人數(shù);

把抽取的人編號,然后用列舉法列出隨機選3人的各種可能,計數(shù)出至少有兩名是地區(qū)觀眾的組數(shù),由概率公式計算出概率;

根據(jù)公式計算出,可得結論.

試題解析:

Ⅰ)由題意,得所以,所以,

因為,所以 ,

則應抽取地區(qū)的滿意觀眾,抽取地區(qū)的滿意觀眾.

Ⅱ)所抽取的地區(qū)的滿意觀眾記為,所抽取的地區(qū)的滿意觀眾記為1,2

則隨機選出三人的不同選法有, , ,共10個結果,

至少有兩名是地區(qū)的結果有7個,其概率為.

(Ⅲ)

由表格得 ,

所以沒有理由認為觀眾的滿意程度是否與所在地區(qū)有關系.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某中學組織了一次高二文科學生數(shù)學學業(yè)水平模擬測試,學校從測試合格的男、女生中各隨機抽取100人的成績進行統(tǒng)計分析,分別制成了如圖所示的男生和女生數(shù)學成績的頻率分布直方圖.

(Ⅰ)若所得分數(shù)大于等于80分認定為優(yōu)秀,求男、女生優(yōu)秀人數(shù)各有多少人?

(Ⅱ)在(Ⅰ)中的優(yōu)秀學生中用分層抽樣的方法抽取5人,從這5人中任意任取2人,求至少有一名男生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[2018·郴州期末]已知三棱錐中,垂直平分,垂足為,是面積為的等邊三角形,,平面,垂足為,為線段的中點.

(1)證明:平面;

(2)求與平面所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線C=2px經過點(1,2).過點Q(0,1)的直線l與拋物線C有兩個不同的交點AB,且直線PAy軸于M,直線PBy軸于N

求直線l的斜率的取值范圍

O為原點,,求證為定值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知曲線的參數(shù)方程為, 為參數(shù)).以坐標原點為極點, 軸的正半軸為極軸,取相同的長度單位建立極坐標系,直線的極坐標方程為.

(1)當時,求曲線上的點到直線的距離的最大值;

(2)若曲線上的所有點都在直線的下方,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設拋物線C:的焦點為F,拋物線上的點A軸的距離等于.

1)求拋物線C的方程;

2)已知經過拋物線C的焦點F的直線與拋物線交于A,B兩點,證明: 為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知動點P到定點的距離比它到直線的距離小2,設動點P的軌跡為曲線C

求曲線C的方程;

若直線與曲線C和圓從左至右的交點依次為A,B,C,D的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題中正確的個數(shù)是(  )

①命題“任意”的否定是“任意;

②命題“若,則”的逆否命題是真命題;

③若命題為真,命題為真,則命題為真;

④命題“若,則”的否命題是“若,則.

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】探究函數(shù)上的最小值,并確定取得最小值時的值,列表如下:

0.5

1

1.5

1.7

1.9

2

2.1

2.2

2.3

3

4

5

7

14

7

5.34

5.11

5.01

5

5.01

5.04

5.08

5.67

7

8.6

12.14

1)觀察表中值隨值變化趨勢特點,請你直接寫出函數(shù)的單調區(qū)間,并指出當取何值時函數(shù)的最小值為多少;

2)用單調性定義證明函數(shù)上的單調性.

查看答案和解析>>

同步練習冊答案