【題目】已知關(guān)于的一元二次方程.

(1)若,是一枚骰子擲兩次所得到的點(diǎn)數(shù),求方程有兩正根的概率;

(2)若,,求方程沒有實(shí)根的概率.

【答案】12

【解析】

本題考查等可能事件的概率,在解題過程中主要應(yīng)用列舉法來列舉出所有的滿足條件的事件數(shù),這是本題的精華部分.

1)基本事件(a,b)共有36個(gè),且a,b∈{1,2,3,4,5,6},方程有兩個(gè)證實(shí)數(shù)根等價(jià)于a-20,16-0,△≥0,即a2,-4b4,得到符合題意的事件的基本事件數(shù)為4個(gè),故可以求解得到。

2)設(shè)一元二次方程無實(shí)數(shù)根為事件B,則構(gòu)成事件B的區(qū)域?yàn)?/span>

B={a,b∣2≤a≤6,0≤b≤4,16},利用面積比得到概率值。

解:(1)基本事件(a,b)共有36個(gè),且a,b∈{1,2,3,4,5,6},方程有兩個(gè)證實(shí)數(shù)根等價(jià)于a-20,16-0,△≥0,即a2,-4b4,

設(shè)一元二次方程有兩個(gè)正實(shí)數(shù)根為事件A,則事件A所包含的基本事件為(6,1),(6,2),(6,3),(5,3)共4個(gè),故所求概率為P(A)=.

(2)設(shè)一元二次方程無實(shí)數(shù)根為事件B,則構(gòu)成事件B的區(qū)域?yàn)?/span>

B={a,b∣2≤a≤6,0≤b≤4,16},其面積為S(B)=××=4,故所求概率為P(B)=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將圓x2+y2=1上每一點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉淼?倍,得曲線C.
(1)寫出C的參數(shù)方程;
(2)設(shè)直線l:2x+y﹣2=0與C的交點(diǎn)為P1 , P2 , 以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,求過線段P1P2的中點(diǎn)且與l垂直的直線的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某禮品店要制作一批長(zhǎng)方體包裝盒,材料是邊長(zhǎng)為的正方形紙板.如圖所示,先在其中相鄰兩個(gè)角處各切去一個(gè)邊長(zhǎng)是的正方形,然后在余下兩個(gè)角處各切去一個(gè)長(zhǎng)、寬分別為的矩形,再將剩余部分沿圖中的虛線折起,做成一個(gè)有蓋的長(zhǎng)方體包裝盒.

(1)求包裝盒的容積關(guān)于的函數(shù)表達(dá)式,并求函數(shù)的定義域;

(2)當(dāng)為多少時(shí),包裝盒的容積最大?最大容積是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C所對(duì)的邊分別為ab,cacosBbcosA

(1)求 的值;

(2)若sin A,求sin(C) 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙3人投籃,投進(jìn)的概率分別是.

(Ⅰ)現(xiàn)3人各投籃1,3人都沒有投進(jìn)的概率;

(Ⅱ)表示乙投籃3次的進(jìn)球數(shù),求隨機(jī)變量的概率分布及數(shù)學(xué)期望;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】女共名同學(xué)從左至右排成一排合影,要求左端排男同學(xué),右端排女同學(xué),且女同學(xué)至多有人排在一起,則不同的排法種數(shù)為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),則下列命題中正確的個(gè)數(shù)是( )

當(dāng)時(shí),函數(shù)上是單調(diào)增函數(shù);

當(dāng)時(shí),函數(shù)上有最小值;

函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱;

方程可能有三個(gè)實(shí)數(shù)根.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求該函數(shù)的定義域;

(2)當(dāng)時(shí),如果對(duì)任何都成立,求實(shí)數(shù)的取值范圍;

(3)若,將函數(shù)的圖像沿軸方向平移,得到一個(gè)偶函數(shù)的圖像,設(shè)函數(shù)的最大值為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,橢圓 的離心率是,且直線 被橢圓截得的弦長(zhǎng)為

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)若直線與圓 相切:

(i)求圓的標(biāo)準(zhǔn)方程;

(ii)若直線過定點(diǎn),與橢圓交于不同的兩點(diǎn)、,與圓交于不同的兩點(diǎn)、,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案