【題目】已知圓及直線,直線被圓截得的弦長為.
()求實數(shù)的值.
()求過點并與圓相切的切線方程.
【答案】(1);(2)或
【解析】
試題分析:(1)根據(jù)圓的方程找出圓心坐標(biāo)與圓的半徑,然后利用點到直線的距離公式表示出圓心到直線的距離,然后根據(jù)垂徑定理得到弦心距,弦的一半及圓的半徑成直角三角形,利用勾股對了列出關(guān)于的方程,求出方程的解即可得到的值,然后由大于0,得到滿足題意的值;(2)把(1)求出的值代入圓的方程中確定出圓的方程,即可得到圓心的坐標(biāo),并判斷得到已知點在圓外,分兩種情況:當(dāng)切線的斜率不存在時,得到為圓的切線;當(dāng)切線的斜率存在時,設(shè)切線的斜率為,由和設(shè)出的寫出切線的方程,根據(jù)直線與圓相切時圓心到直線的距離等于圓的半徑,利用點到直線的距離公式表示出圓心到切線的距離,讓等于圓的半徑即可列出關(guān)于的方程,求出方程的解即可得到的值,把的值代入所設(shè)的切線方程即可確定出切線的方程.
試題解析:()根據(jù)題意可得圓心,半徑,則圓心到直線的距離,
由勾股定理可以知道,代入化簡得,
解得或,
又,
所以.
()由()知圓,圓心為,半徑,
點到圓心的距離為,故點在圓外,
當(dāng)切線方程的斜率存在時,設(shè)方程為,則圓心到切線的距離,
化簡得:,故.
∴切線方程為,
即,
當(dāng)切線方程斜率不存在時,直線方程為與圓相切,
綜上,過點并與圓相切的切線方程為或.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足a1=0,an+1=an+2 +1
(1)求證數(shù)列{ }是等差數(shù)列,并求出an的通項公式;
(2)若bn= ,求數(shù)列的前n項的和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】第31屆夏季奧林匹克運動會于2016年8月5日至8月21日在巴西里約熱內(nèi)盧舉行.如表是近五屆奧運會中國代表團和俄羅斯代表團獲得的金牌數(shù)的統(tǒng)計數(shù)據(jù)(單位:枚).
第30屆倫敦 | 第29屆北京 | 第28屆雅典 | 第27屆悉尼 | 第26屆亞特蘭大 | |
中國 | 38 | 51 | 32 | 28 | 16 |
俄羅斯 | 24 | 23 | 27 | 32 | 26 |
(1)根據(jù)表格中兩組數(shù)據(jù)在答題卡上完成近五屆奧運會兩國代表團獲得的金牌數(shù)的莖葉圖,并通過莖葉圖比較兩國代表團獲得的金牌數(shù)的平均值及分散程度(不要求計算出具體數(shù)值,給出結(jié)論即可);
(2)如表是近五屆奧運會中國代表團獲得的金牌數(shù)之和(從第26屆算起,不包括之前已獲得的金牌數(shù))隨時間變化的數(shù)據(jù):
時間(屆) | 26 | 27 | 28 | 29 | 30 |
金牌數(shù)之和(枚) | 16 | 44 | 76 | 127 | 165 |
作出散點圖如圖:
由圖可以看出,金牌數(shù)之和與時間之間存在線性相關(guān)關(guān)系,請求出關(guān)于的線性回歸方程,并預(yù)測從第26屆到第32屆奧運會時中國代表團獲得的金牌數(shù)之和為多少?
附:對于一組數(shù)據(jù), ,…, ,其回歸直線的斜率和截距的最小二乘估計分別為:,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線的參數(shù)方程是(為參數(shù)),曲線的參數(shù)方程是(為參數(shù)).
(Ⅰ)將曲線,的參數(shù)方程化為普通方程;
(Ⅱ)求曲線上的點到曲線的距離的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(分)如圖,在三棱錐中,底面為等邊三角形,,,為的中點.
(Ⅰ)求證:.
(Ⅱ)判斷在線段上是否存在點(與點不重合),使得為直角三角形?若存在,試找出一個點,并求的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}中, ,若利用下面程序框圖計算該數(shù)列的第2016項,則判斷框內(nèi)的條件是( )
A.n≤2014
B.n≤2016
C.n≤2015
D.n≤2017
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:
該興趣小組確定的研究方案是:先用2、3、4、5月的4組數(shù)據(jù)求線性回歸方程,再用1月和6月的2組數(shù)據(jù)進行檢驗.
(1)請根據(jù)2、3、4、5月的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;
(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認(rèn)為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?
(參考公式: ,)
參考數(shù)據(jù):11×25+13×29+12×26+8×16=1092,112+132+122+82=498.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項和為Sn , 滿足2Sn=an+1﹣2n+1+1,n∈N* , 且a1 , a2+5,a3成等差數(shù)列.
(1)求a1的值;
(2)求數(shù)列{an}的通項公式;
(3)證明:對一切正整數(shù)n,有 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com