【題目】有甲乙兩個(gè)班級(jí)進(jìn)行數(shù)學(xué)考試,按照大于等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計(jì)成績后,得到如下的列聯(lián)表.
優(yōu)秀 | 非優(yōu)秀 | 總計(jì) | |
甲班 | 10 | ||
乙班 | 30 | ||
總計(jì) | 105 |
已知在全部105人中隨機(jī)抽取1人為優(yōu)秀的概率為.
(1)請完成上面的列聯(lián)表;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按95%的可靠性要求,能否認(rèn)為“成績與班級(jí)有關(guān)系”?
參考公式:K2=
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 |
【答案】(1)見解析(2)有
【解析】分析:(1)由全部人抽到隨機(jī)抽取1人為優(yōu)秀的概率為,可以計(jì)算出優(yōu)秀人數(shù)為30,從而可得到表中各項(xiàng)數(shù)據(jù)的值;(2)根據(jù)列聯(lián)表中的數(shù)據(jù),代入公式
,計(jì)算出的值,與臨界值比較即可得到結(jié)論.
詳解:(1)
優(yōu)秀 | 非優(yōu)秀 | 總計(jì) | |
甲班 | 10 | 45 | 55 |
乙班 | 20 | 30 | 50 |
總計(jì) | 30 | 75 | 105 |
(2)根據(jù)列聯(lián)表中的數(shù)據(jù),得到
K2=≈6.109>3.841,
因此有95%的把握認(rèn)為“成績與班級(jí)有關(guān)系”.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一圓臺(tái)上底半徑為5cm,下底半徑為10cm,母線AB長為20cm,其中A在上底面上,B在下底面上,從AB中點(diǎn)M,拉一條繩子,繞圓臺(tái)的側(cè)面一周轉(zhuǎn)到B點(diǎn),則這條繩子最短長為 cm.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是偶函數(shù),且,.
(1)當(dāng)時(shí),求函數(shù)的值域;
(2)設(shè)R,求函數(shù)的最小值;
(3)對(duì)(2)中的,若不等式對(duì)于任意的恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求的單調(diào)區(qū)間;
(2)證明:當(dāng)時(shí),方程在區(qū)間上只有一個(gè)解;
(3)設(shè),其中.若恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了增強(qiáng)環(huán)保意識(shí),某社團(tuán)從男生中隨機(jī)抽取了60人,從女生中隨機(jī)抽取了50人參加環(huán)保知識(shí)測試,統(tǒng)計(jì)數(shù)據(jù)如下表所示:
優(yōu)秀 | 非優(yōu)秀 | 總計(jì) | |
男生 | 40 | 20 | 60 |
女生 | 20 | 30 | 50 |
總計(jì) | 60 | 50 | 110 |
(1)試判斷是否有99%的把握認(rèn)為環(huán)保知識(shí)是否優(yōu)秀與性別有關(guān);
(2)為參加市舉辦的環(huán)保知識(shí)競賽,學(xué)校舉辦預(yù)選賽,現(xiàn)在環(huán)保測試優(yōu)秀的同學(xué)中選3人參加預(yù)選賽,已知在環(huán)保測試中優(yōu)秀的同學(xué)通過預(yù)選賽的概率為,若隨機(jī)變量表示這3人中通過預(yù)選賽的人數(shù),求的分布列與數(shù)學(xué)期望.
附:=
0.500 | 0.400 | 0.100 | 0.010 | 0.001 | |
0.455 | 0.708 | 2.706 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線 =1(a>0,b>0),過其左焦點(diǎn)F作x軸的垂線,交雙曲線于A,B兩點(diǎn),若雙曲線的右頂點(diǎn)在以AB為直徑的圓外,則雙曲線離心率的取值范圍是( )
A.(1, )
B.(1,2)
C.( ,+∞)
D.(2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y2=4x與點(diǎn)M(0,2),過C的焦點(diǎn),且斜率為k的直線與C交于A,B兩點(diǎn),若 =0,則k= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣2|+|2x+1|.
(Ⅰ)解不等式f(x)>5;
(Ⅱ)若關(guān)于x的方程 =a的解集為空集,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校為了解本校學(xué)生在校小賣部的月消費(fèi)情況,隨機(jī)抽取了60名學(xué)生進(jìn)行統(tǒng)計(jì).得到如下樣本頻數(shù)分布表:
月消費(fèi)金額(單位:元) | ||||||
人數(shù) | 30 | 6 | 9 | 10 | 3 | 2 |
記月消費(fèi)金額不低于300元為“高消費(fèi)”,已知在樣本中隨機(jī)抽取1人,抽到是男生“高消費(fèi)”的概率為.
(1)從月消費(fèi)金額不低于400元的學(xué)生中隨機(jī)抽取2人,求至少有1人月消費(fèi)金額不低于500元的概率;
(2)請將下面的列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為“高消費(fèi)”與“男女性別”有關(guān),說明理由.
高消費(fèi) | 非高消費(fèi) | 合計(jì) | |
男生 | |||
女生 | 25 | ||
合計(jì) | 60 |
下面的臨界值表僅供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中,其中)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com