(Ⅰ)已知函數(shù))的最小正周期為.求函數(shù)的單調(diào)增區(qū)間;
(Ⅱ)在中,角對(duì)邊分別是,且滿足.若,的面積為.求角的大小和邊b的長.

(1);(2)

解析試題分析:(Ⅰ)由正弦的二倍角公式和降冪公式,將的解析式變形為的形式,然后根據(jù)的關(guān)系,確定的值,再結(jié)合的單調(diào)區(qū)間,最終確定函數(shù)的單調(diào)增區(qū)間;(Ⅱ)由已知不難聯(lián)想到余弦定理,已知和余弦定理聯(lián)立,得,然后求出的值,進(jìn)而確定A,根據(jù)面積,得值,再根據(jù)余弦定理,得的另一方程,聯(lián)立求
試題解析:(Ⅰ)由題意得
,由周期為,得. 得,由正弦函數(shù)的單調(diào)增區(qū)間
,得,所以函數(shù)的單調(diào)增區(qū)間是

(Ⅱ)由余弦定理得  ,代入, ∵,∴,,解得:.
考點(diǎn):1、正弦函數(shù)的單調(diào)性;2、正弦的二倍角公式和降冪公式;3、余弦定理和面積公式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知向量a=,b=,設(shè)函數(shù)=ab.
(Ⅰ)求的單調(diào)遞增區(qū)間;
(Ⅱ)若將的圖象向左平移個(gè)單位,得到函數(shù)的圖象,求函數(shù)在區(qū)間上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在△ABC中,角所對(duì)的邊分別為
(Ⅰ)求的值
(Ⅱ)求三角函數(shù)式的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知
(Ⅰ)求的值;
(Ⅱ)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

中,已知.
(1)求證:;
(2)若求角A的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(1)已知f(x)=sinx+2sin()cos().(1)若f(α)=,α∈(-,0),求α的值;
(2)若sin,x∈(,π),求f(x)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

)在△中,角、所對(duì)的邊分別為、、,且.
(1)求的值;
(2)若,,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知角的頂點(diǎn)在原點(diǎn),始邊與軸的正半軸重合,終邊經(jīng)過點(diǎn).
(Ⅰ)求的值;
(Ⅱ)若函數(shù),求函數(shù)在區(qū)間上的取值范圍. 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)
(1)求函數(shù)的最小正周期和單調(diào)遞增區(qū)間;
(2)求函數(shù)在區(qū)間上的最小值和最大值,并求出取最值時(shí)的值。

查看答案和解析>>

同步練習(xí)冊(cè)答案