【題目】已知.
(1)若,求曲線的單調(diào)性;
(2)若在處取得極大值,求實數(shù)的取值范圍.
【答案】(1)在上為減函數(shù);(2)
【解析】試題分析:(1)求導(dǎo)得到,進(jìn)行二階導(dǎo),得到時, ,即,所以在上為減函數(shù);(2),得,對分, , , 四類討論,最后解得答案。
試題解析:
(1)當(dāng)時, , ,設(shè),
則,當(dāng)時, ,
當(dāng)時, ,所以在單調(diào)遞增,在上為減函數(shù),
又 ,所以當(dāng)時, ,即,所以在上為減函數(shù),
(2)由已知得,則,
記,則,
①若,則當(dāng)時, ,故函數(shù)在上單調(diào)遞增,
且當(dāng)時, ,即;當(dāng)時, ,
即,又,所以在處取得極小值不滿足題意.
②若時,當(dāng)時, ,故函數(shù)在上單調(diào)遞增,
且當(dāng)時, ,即;當(dāng)時, ,
即,又,所以在處取極小值不滿足題意.
③若,則當(dāng)時,故在上單調(diào)遞增;
當(dāng)時, ,故在上單調(diào)遞減,所以當(dāng)時, ,
即,故在上點掉遞減,不滿足題意.
④若,則,當(dāng)時, ,故在上單調(diào)遞減,
且當(dāng)時, ,即;當(dāng)時, ,
即,又,所以在處取得極大值,滿足題意,
綜上,實數(shù)的取值范圍是.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)為常數(shù)
(1)當(dāng)在處取得極值時,若關(guān)于x的方程 在上恰有兩個不相等的實數(shù)根,求實數(shù)b的取值范圍.
(2)若對任意的,總存在,使不等式 成立,求實數(shù) 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a∈R,函數(shù)f(x)=x2﹣2ax+5.
(1)若a>1,且函數(shù)f(x)的定義域和值域均為[1,a],求實數(shù)a的值;
(2)若不等式x|f(x)﹣x2|≤1對x∈[ , ]恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且三角形的面積為S= bccosA.
(1)求角A的大小;
(2)若c=8,點D在AC邊上,且CD=2,cos∠ADB=﹣ ,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= .
(1)求f(x)+f(1﹣x)的值;
(2)若數(shù)列{an}滿足an=f(0)+f( )+f( )+…+f( )+f(1)(n∈N*),求數(shù)列{an}的通項公式;
(3)若數(shù)列{bn}滿足bn=2nan , Sn是數(shù)列{bn}的前n項和,是否存在正實數(shù)k,使不等式knSn>3bn對于一切的n∈N*恒成立?若存在,請求出k的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】偶函數(shù)f(x)滿足f(x﹣1)=f(x+1),且在x∈[0,1]時,f(x)=x2 , g(x)=ln|x|,則函數(shù)h(x)=f(x)﹣g(x)的零點的個數(shù)是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的偶函致y=f(x),恒有f(x+4)=f(x)﹣f(﹣2)成立,且f(0)=1,當(dāng)0≤x1<x2≤2時, <0,則方程f(x)﹣lg|x|=0的根的個數(shù)為( )
A.12
B.10
C.6
D.5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的右焦點為,離心率為,設(shè)直線的斜率是,且與橢圓交于, 兩點.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程.
(Ⅱ)若直線在軸上的截距是,求實數(shù)的取值范圍.
(Ⅲ)以為底作等腰三角形,頂點為,求的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com