【題目】已知拋物線C:y2=2x,過點(2,0)的直線l交C于A,B兩點,圓M是以線段AB為直徑的圓.
(1)證明:坐標原點O在圓M上;
(2)設(shè)圓M過點P(4,-2),求直線l與圓M的方程.
【答案】(1)見解析;(2)
【解析】(1)證明略;(2)直線的方程為,圓的方程為.或直線的方程為,圓的方程為
試題分析:(1)設(shè)出點的坐標,聯(lián)立直線與拋物線的方程,由斜率之積為可得,即得結(jié)論;(2)結(jié)合(1)的結(jié)論求得實數(shù)的值,分類討論即可求得直線的方程和圓的方程.
試題解析:(1)設(shè),.
由 可得,則.
又,故.
因此的斜率與的斜率之積為,所以.
故坐標原點在圓上.
(2)由(1)可得.
故圓心的坐標為,圓的半徑.
由于圓過點,因此,故,
即,
由(1)可得.
所以,解得或.
當時,直線的方程為,圓心的坐標為,圓的半徑為,圓的方程為.
當時,直線的方程為,圓心的坐標為,圓的半徑為,圓 的方程為.
【名師點睛】直線與拋物線的位置關(guān)系和直線與橢圓、雙曲線的位置關(guān)系類似,一般要用到根與系數(shù)的關(guān)系;在解決直線與拋物線的位置關(guān)系時,要特別注意直線與拋物線的對稱軸平行的特殊情況.中點弦問題,可以利用“點差法”,但不要忘記驗證或說明中點在曲線內(nèi)部.
【題型】解答題
【結(jié)束】
21
【題目】已知函數(shù).
(1)若,求a的值;
(2)設(shè)m為整數(shù),且對于任意正整數(shù)n,,求m的最小值.
科目:高中數(shù)學 來源: 題型:
【題目】在一項研究中,為盡快攻克某一課題,某生物研究所分別設(shè)立了甲、乙兩個研究小組同時進行對比試驗,現(xiàn)隨機在這兩個小組各抽取40個數(shù)據(jù)作為樣本,并規(guī)定試驗數(shù)據(jù)落在[495,510)之內(nèi)的數(shù)據(jù)作為理想數(shù)據(jù),否則為不理想數(shù)據(jù).試驗情況如表所示
(1)由以上統(tǒng)計數(shù)據(jù)完成下面2×2列聯(lián)表;
(2)判斷是否有90%的把握認為抽取的數(shù)據(jù)為理想數(shù)據(jù)與對兩個研究小組的選擇有關(guān);說明你的理由;(下面的臨界值表供參考)
(參考公式:其中n=a+b+c+d)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若數(shù)列滿足:對于任意均為數(shù)列中的項,則稱數(shù)列為“ 數(shù)列”.
(1)若數(shù)列的前項和,求證:數(shù)列為“ 數(shù)列”;
(2)若公差為的等差數(shù)列為“ 數(shù)列”,求的取值范圍;
(3)若數(shù)列為“ 數(shù)列”,,且對于任意,均有,求數(shù)列的通項公式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某超市計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當天全部處理完.根據(jù)往年銷售經(jīng)驗,每天需求量與當天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間,需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計劃,統(tǒng)計了前三年六月份各天的最高氣溫數(shù)據(jù),得下面的頻數(shù)分布表:
最高 氣溫 | [10, 15) | [15, 20) | [20, 25) | [25, 30) | [30, 35) | [35, 40) |
天數(shù) | 2 | 16 | 36 | 25 | 7 | 4 |
以最高氣溫位于各區(qū)間的頻率代替最高氣溫位于該區(qū)間的概率.
(1)求六月份這種酸奶一天的需求量X(單位:瓶)的分布列.
(2)設(shè)六月份一天銷售這種酸奶的利潤為Y(單位:元),當六月份這種酸奶一天的進貨量n(單位:瓶)為多少時,Y的數(shù)學期望達到最大值?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】【題目】已知拋物線C:y2=2x,過點(2,0)的直線l交C于A,B兩點,圓M是以線段AB為直徑的圓.
(1)證明:坐標原點O在圓M上;
(2)設(shè)圓M過點P(4,-2),求直線l與圓M的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知在幾何體ABCDE中,AB⊥平面BCE,且△BCE是正三角形,四邊形ABCD為正方形,F是線段CD上的中點,G是線段BE的中點,且AB=2.
(1)求證:GF∥平面ADE;
(2)求三棱錐F–BGC的表面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,且過點.
(Ⅰ)求橢圓的方程;
(Ⅱ)過橢圓的左焦點的直線與橢圓交于兩點,直線過坐標原點且與直線的斜率互為相反數(shù).若直線與橢圓交于兩點且均不與點重合,設(shè)直線與軸所成的銳角為,直線與軸所成的銳角為,判斷與的大小關(guān)系并加以證明.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2017年5月,“一帶一路”沿線的20國青年評選出了中國“新四大發(fā)明”:高鐵、支付寶、共享單車和網(wǎng)購.2017年末,“支付寶大行動”用發(fā)紅包的方法刺激支付寶的使用.某商家統(tǒng)計前5名顧客掃描紅包所得金額分別為5.5元,2.1元,3.3元,5.9元,4.7元,商家從這5名顧客中隨機抽取3人贈送臺歷.
(1)求獲得臺歷是三人中至少有一人的紅包超過5元的概率;
(2)統(tǒng)計一周內(nèi)每天使用支付寶付款的人數(shù)與商家每天的凈利潤元,得到7組數(shù)據(jù),如表所示,并作出了散點圖.
(i)直接根據(jù)散點圖判斷,與哪一個適合作為每天的凈利潤的回歸方程類型.(的值取整數(shù))
(ii)根據(jù)(i)的判斷,建立關(guān)于的回歸方程,并估計使用支付寶付款的人數(shù)增加到35時,商家當天的凈利潤.
參考數(shù)據(jù):
22.86 | 194.29 | 268.86 | 3484.29 |
附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),且滿足.
(1)判斷函數(shù)在上的單調(diào)性,并用定義證明;
(2)設(shè)函數(shù),若在上有兩個不同的零點,求實數(shù)的取值范圍;
(3)若存在實數(shù),使得關(guān)于的方程恰有4個不同 的正根,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com