【題目】如圖,在四棱錐中,底面,,,,,點是棱的中點.
(1)求證:平面;
(2)求二面角的大小.
【答案】(1)見解析(2)
【解析】
(1)取的中點,連接、,證明四邊形為平行四邊形,即可證明平面.
(2)以為坐標(biāo)原點,,,所在的直線分別為軸、軸、軸建立如圖所示的空間直角坐標(biāo)系,求出平面的一個法向量,取平面的一個法向量為,結(jié)合空間向量數(shù)量積運算即可得解.
證明:(1)如圖,取的中點,連接、.
∵是的中點,∴,,
又,,所以,,
∴四邊形為平行四邊形,
∴,
又平面,平面,
∴平面.
(2)在平面內(nèi)過點作的垂線,由題意知,,兩兩垂直,以
為坐標(biāo)原點,,,所在的直線分別為軸、軸、軸建立如圖所示的空
間直角坐標(biāo)系,由題意知,,,
可得,,,∴,,
設(shè)平面的法向量為,
則由,即,令,則,,
∴為平面的一個法向量.
∵底面,∴可取平面的一個法向量為,
∴,
∵二面角為銳二面角,
∴二面角的大小為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】杭州西溪國家濕地公園是以水為主題的公園,以濕地良好生態(tài)環(huán)境和多樣化濕地景觀資源為基礎(chǔ)的生態(tài)型主題公園.欲在該公園內(nèi)搭建一個平面凸四邊形的休閑觀光及科普宣教的平臺,如圖所示,其中百米,百米,為正三角形.建成后將作為人們旅游觀光休閑娛樂的區(qū)域,將作為科普宣教濕地功能利用弘揚濕地文化的區(qū)域.
(1)當(dāng)時,求旅游觀光休閑娛樂的區(qū)域的面積;
(2)求旅游觀光休閑娛樂的區(qū)域的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,.過焦點且垂直于軸的直線與橢圓相交所得的弦長為3,直線與橢圓相切.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)過點的直線與橢圓相交于,兩點,若,問直線是否存在?若存在,求直線的斜率的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在以,,,,,為頂點的五面體中,平面平面,,四邊形為平行四邊形,且.
(1)求證:;
(2)若,,直線與平面所成角為60°,求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)計劃用他姓名的首字母,身份證的后4位數(shù)字(4位數(shù)字都不同)以及3個符號設(shè)置一個六位的密碼.若必選,且符號不能超過兩個,數(shù)字不能放在首位和末位,字母和數(shù)字的相對順序不變,則他可設(shè)置的密碼的種數(shù)為( )
A.864B.1009C.1225D.1441
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知衡量病毒傳播能力的最重要指標(biāo)叫做傳播指數(shù)RO.它指的是,在自然情況下(沒有外力介入,同時所有人都沒有免疫力),一個感染到某種傳染病的人,會把疾病傳染給多少人的平均數(shù).它的簡單計算公式是:確認(rèn)病例增長率系列間隔,其中系列間隔是指在一個傳播鏈中,兩例連續(xù)病例的間隔時間(單位:天).根據(jù)統(tǒng)計,確認(rèn)病例的平均增長率為,兩例連續(xù)病例的間隔時間的平均數(shù)為天,根據(jù)以上RO數(shù)據(jù)計算,若甲得這種傳染病,則輪傳播后由甲引起的得病的總?cè)藬?shù)約為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程:(為參數(shù)),以坐標(biāo)原點為極點,以軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程;
(2)過曲線上一點作直線與曲線交于兩點,中點為,,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是等腰梯形,,,是等邊三角形,點在上,且.
(1)證明://平面.
(2)若平面平面,求二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com