【題目】如圖,在三棱柱中,分別是、的中點(diǎn).

(1)設(shè)棱的中點(diǎn)為,證明:平面

(2)若,,,且平面平面.

(i)求三棱柱的體積;

(ii)求二面角的余弦值.

【答案】(1)證明見解析;(2)(i)12;(ii).

【解析】

(1)先證明四邊形是平行四邊形,再證明平面平面,得到平面.

(2)(i)先計(jì)算,根據(jù)平面,計(jì)算體積得到答案.

(ii)先判斷是二面角的平面角,再利用邊角關(guān)系計(jì)算得到答案.

21.(1)證明:連接,∵的中點(diǎn),的中點(diǎn),

可由棱柱的性質(zhì)知,且;

∴四邊形是平行四邊形,∴.

分別是、的中點(diǎn),∴,∴平面平面.

平面,∴平面.

(2)(i),

平面平面,

平面.

,;

(ii)在面內(nèi)作于點(diǎn)在面內(nèi)作于點(diǎn),連接.

∵平面平面,

平面

是二面角的平面角,

中,,.

設(shè)二面角的大小為,則

,∴.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的通項(xiàng)公式為an=則數(shù)列{an}中的最大項(xiàng)為(  )

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某測試團(tuán)隊(duì)為了研究“飲酒”對“駕車安全”的影響,隨機(jī)選取名駕駛員先后在無酒狀態(tài)、酒后狀態(tài)下進(jìn)行“停車距離”測試.試驗(yàn)數(shù)據(jù)分別列于表和表.統(tǒng)計(jì)方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)值作為代表.

停車距離(米)

頻數(shù)

平均每毫升血液酒精含量毫克

平均停車距離

1)根據(jù)最小二乘法,由表的數(shù)據(jù)計(jì)算關(guān)于的回歸方程;

2)該測試團(tuán)隊(duì)認(rèn)為:駕駛員酒后駕車的平均“停車距離”大于無酒狀態(tài)下(表)的停車距離平均數(shù)的倍,則認(rèn)定駕駛員是“醉駕”.請根據(jù)(1)中的回歸方程,預(yù)測當(dāng)每毫升血液酒精含量大于多少毫克時(shí)為“醉駕”?

附:回歸方程中,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)若函數(shù)有三個(gè)不同的零點(diǎn),則實(shí)數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在[1,1]上的偶函數(shù)f(x),已知當(dāng)x∈[0,1]時(shí)的解析式為(aR)

(1)f(x)[-1,0]上的解析式;

(2)f(x)[0,1]上的最大值h(a)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

Ⅰ.求函數(shù)的最小正周期和單調(diào)遞增區(qū)間;

Ⅱ.當(dāng)時(shí),方程恰有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍;

Ⅲ.將函數(shù)的圖象向右平移個(gè)單位后所得函數(shù)的圖象關(guān)于原點(diǎn)中心對稱,求的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù)

(Ⅰ)求不等式的解集;

(Ⅱ)已知函數(shù)的最小值為,若實(shí)數(shù),求

最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)以往的經(jīng)驗(yàn),某建筑工程施工期間的降水量單位: 對工期的影響如下表:

根據(jù)某氣象站的資料,某調(diào)查小組抄錄了該工程施工地某月前20天的降水量的數(shù)據(jù),繪制得到降水量的折線圖,如下圖所示.

1根據(jù)降水量的折線圖,分別求該工程施工延誤天數(shù)的頻率;

2)以1中的頻率作為概率,求工期延誤天數(shù)的分布列及數(shù)學(xué)期望與方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四面體中, ,點(diǎn)分別是棱的中點(diǎn)。

(1)求證: 平面;

(2)求證:四邊形為矩形.

查看答案和解析>>

同步練習(xí)冊答案