【題目】某中學擬在高一下學期開設游泳選修課,為了了解高一學生喜歡游泳是否與性別有關,現(xiàn)從高一學生中抽取100人做調查,得到列聯(lián)表,且已知在100個人中隨機抽取1人,抽到喜歡游泳的學生的概率為.

1)請完成列聯(lián)表;

喜歡游泳

不喜歡游泳

合計

男生

40

女生

30

合計

100

2)根據(jù)列聯(lián)表,是否有99.9%的把握認為喜歡游泳與性別有關?并說明你的理由.

附:參考公式與臨界值表如下:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

【答案】1)列聯(lián)表答案見解析.(2)有的把握認為“喜歡游泳與性別有關系”,理由見解析

【解析】

1)根據(jù)已知條件補全列聯(lián)表.

(2)計算出的值,由此判斷出有99.9%的把握認為“喜歡游泳與性別有關系”.

1)因為在100人中隨機抽取1人喜歡游泳的概率為.所以喜歡游泳的人數(shù)為,所以列聯(lián)表如下:

喜歡游泳

不喜歡游泳

合計

男生

40

10

50

女生

20

30

50

合計

60

40

100

2,所以有99.9%的把握認為“喜歡游泳與性別有關系”.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中, , .

(1)證明:平面平面

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖放置的邊長為1的正方形沿軸滾動,恰好經(jīng)過原點.設頂點的軌跡方程是,則對函數(shù)有下列判斷①函數(shù)是偶函數(shù);②對任意的,都有;③函數(shù)在區(qū)間上單調遞減;④函數(shù)的值域是;⑤.其中判斷正確的序號是__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線,橢圓分別為橢圓的左、右焦點.

(1)當直線過右焦點時,求橢圓的標準方程;

(2)設直線與橢圓交于兩點,為坐標原點,且,若點在以線段為直徑的圓內,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法錯誤的是( )

A.自變量取值一定時,因變量的取值有一定隨機性的兩個變量之間的關系叫做相關關系

B.在線性回歸分析中,相關系數(shù)越大,變量間的相關性越強

C.在殘差圖中,殘差點分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高

D.在回歸分析中,的模型比的模型擬合的效果好

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在矩形中,,,平面,且、分別為,中點.

(1)求證:平面平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司印制了一批文化衫,每件文化衫可有紅、黃、藍三種不同的顏色和四種不同的圖案.現(xiàn)將這批文化衫分發(fā)給名新員工,每名員工恰好分到圖案不同的4.試求的最小值,使得總存在兩個人,他們所分到的某兩種圖案的4件文化衫的顏色全部相同.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示的幾何體中,底面為菱形, , 相交于點,四邊形為直角梯形, , ,平面底面.

(1)證明:平面平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某生產基地有五臺機器,現(xiàn)有五項工作待完成,每臺機器完成每項工作后獲得的效益值如表所示.若每臺機器只完成一項工作,且完成五項工作后獲得的效益值總和最大,則下列敘述錯誤的的是_____________.

甲只能承擔第四項工作

乙不能承擔第二項工作

丙可以不承擔第三項工作

丁可以承擔第三項工作

查看答案和解析>>

同步練習冊答案