【題目】設等差數(shù)列{an}的前n項和為Sn,且a3+2S677,a10a510.

1)求數(shù)列{an}的通項公式;

2)數(shù)列{bn}滿足:b11bnbn1ann+1n≥2),求數(shù)列{}的前n項和Tn.

【答案】1an2n12

【解析】

1)聯(lián)立解方程組,得,求出通項公式即可;

2)求出,利用裂項相消法求出數(shù)列的前項和

1)等差數(shù)列{an}的前n項和為Sn,且a3+2S677a10a510

,得

an2n1;

2b11bnbn1ann+1nn≥2),

bn=(bnbn1+bn1bn2+…+b2b1+b1n+n1+…+2+1

n1時,顯然成立,

,

數(shù)列{}的前n項和Tn8)=81.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線C經過點,其焦點為FM為拋物線上除了原點外的任一點,過M的直線lx軸、y軸分別交于A,B兩點.

求拋物線C的方程以及焦點坐標;

的面積相等,證明直線l與拋物線C相切.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校高三年級有1000人,某次考試不同成績段的人數(shù),且所有得分都是整數(shù).

(1)求全班平均成績;

(2)計算得分超過141的人數(shù);(精確到整數(shù))

(3)甲同學每次考試進入年級前100名的概率是,若本學期有4次考試, 表示進入前100名的次數(shù),寫出的分布列,并求期望與方差.

參考數(shù)據(jù): .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)

1)若處的切線與直線平行,求的值;

2)討論函數(shù)的單調區(qū)間;

3)若函數(shù)的圖象與軸交于A,B兩點,線段AB中點的橫坐標為,證明

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某汽車零件加工廠為迎接國慶大促銷活動預估國慶七天銷售量,該廠工作人員根據(jù)以往該廠的銷售情況,繪制了該廠日銷售量的頻率分布直方圖,如圖所示,將日銷售量落入各組的頻率視為概率,并假設每天的銷售量相互獨立.

1)根據(jù)頻率分布直方圖估計該廠的日平均銷售量;(每組以中點值為代表)

2)求未來天內,連續(xù)天日銷售量不低于噸,另一天日銷售量低于噸的概率;

3)用表示未來天內日銷售量不低于噸的天數(shù),求隨機變量的分布列、數(shù)學期望與方差.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy.直線1的參數(shù)方程為t為參數(shù)).在以坐標原點為極點,x軸的非負半軸為極軸的極坐標系中.曲線C的極坐標方程為ρ2cosθ.

1)若曲線C關于直線l對稱,求a的值;

2)若A、B為曲線C上兩點.且∠AOB,求|OA|+|OB|的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題正確的是________(寫出所有正確命題的編號)

①命題“若,則”的否定是“若,則

②已知函數(shù)的圖象關于直線對稱,函數(shù)為奇函數(shù),則4一個周期.

③平面,,過內一點的垂線,則.

④在中角所對的邊分別為,若,則成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=exax

1)討論函數(shù)fx)的單調性;

2)若存在x1x2,且滿足fx1)=(x2).證明;

3)證明:nN).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學生為了測試煤氣灶燒水如何節(jié)省煤氣的問題設計了一個實驗,并獲得了煤氣開關旋鈕旋轉的弧度數(shù)與燒開一壺水所用時間的一組數(shù)據(jù),且作了一定的數(shù)據(jù)處理(如下表),得到了散點圖(如下圖).

表中,.

1)根據(jù)散點圖判斷,哪一個更適宜作燒水時間關于開關旋鈕旋轉的弧度數(shù)的回歸方程類型?(不必說明理由)

2)根據(jù)判斷結果和表中數(shù)據(jù),建立關于的回歸方程;

3)若單位時間內煤氣輸出量與旋轉的弧度數(shù)成正比,那么,利用第(2)問求得的回歸方程知為多少時,燒開一壺水最省煤氣?

附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘法估計值分別為,

查看答案和解析>>

同步練習冊答案